Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Glauberman-Watanabe corresponding $p$-blocks of finite groups with normal defect groups are Morita equivalent

Author: Morton E. Harris
Journal: Trans. Amer. Math. Soc. 357 (2005), 309-335
MSC (2000): Primary 20C20
Published electronically: April 27, 2004
MathSciNet review: 2098097
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G$ be a finite group and let $A$ be a solvable finite group that acts on $G$ such that the orders of $G$ and $A$are relatively prime. Let $b$ be a $p$-block of $G$ with normal defect group $D$ such that $A$ stabilizes $b$ and $D\leq C_{G}(A)$. Then there is a Morita equivalence between the block $b$ and its Watanabe correspondent block $W(b)$ of $C_{G}(A)$ given by a bimodule $M$ with vertex $\Delta D$ and trivial source that on the character level induces the Glauberman correspondence (and which is an isotypy by a theorem of Watanabe).

References [Enhancements On Off] (What's this?)

  • 1. R. Brauer, zur Darstellungstheorie der Gruppen endlicher Ordnung I, Math. Zeit. 63 (1956), 406-444. MR 17:824g
  • 2. R. Brauer, zur Darstellungstheorie der Gruppen endlicher Ordnung. II, Math. Zeit. 72 (1959), 25-46. MR 21:7258
  • 3. E.C. Dade, Isomorphisms of Clifford extensions, Ann. of Math. 92 (1970), 375-433. MR 42:4645
  • 4. E.C. Dade, Group-graded rings and modules, Math. Z. 174 (1980), 241-262. MR 82c:16028
  • 5. W. Feit, ``The Representation Theory of Finite Groups'', North-Holland, New York, 1982. MR 83g:20001
  • 6. G. Glauberman, Correspondence of characters for relatively prime operator groups, Canad. J. Math. 20 (1968), 1465-1488. MR 38:1189
  • 7. D. Gorenstein, ``Finite Groups'', Harper and Row, New York, 1968. MR 38:229
  • 8. M.E. Harris and M. Linckelmann, On the Glauberman and Watanabe correspondence for blocks of finite $p$-solvable groups, Trans. of the A.M.S. 354 (9) (2002), 3435-3453. MR 2003c:20008
  • 9. B. Huppert, ``Endliche Gruppen I'', Springer-Verlag, Berlin, 1967. MR 37:302
  • 10. I.M. Isaacs, ``Character Theory of Finite Groups'', Academic Press, New York, 1976. MR 57:417
  • 11. I.M. Isaacs and G. Navarro, Character correspondences and irreducible induction and restriction, J. of Algebra 140 (1991), 131-140. MR 93a:20015
  • 12. R. Knörr, Blocks, vertices and normal subgroups, Math. Z. 148 (1976), 53-60. MR 53:5723
  • 13. S. Koshitani, personal communication.
  • 14. S. Koshitani and G.O. Michler, Glauberman Correspondence of $p$-Blocks of Finite Groups, J. of Algebra 243 (2001), 504-517. MR 2002g:20024
  • 15. B. Külshammer, Crossed products and blocks with normal defect groups, Comm. Algebra 13 (1985), 147-168. MR 86c:20015
  • 16. W.F. Reynolds, Blocks and normal subgroups, Nagoya Math. J. 22 (1963), 15-32. MR 27:3690
  • 17. J.-P. Serre, ``Corps locaux'', Hermann, Paris, 1962.
  • 18. J. Thevenaz, ``G-Algebras and Modular Representation Theory'', Oxford University Press, New York, 1995. MR 96j:20017
  • 19. A. Watanabe, The Glauberman character correspondence and perfect isometries for blocks of finite groups, J. Algebra (1999), 548-565. MR 2000f:20015

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 20C20

Retrieve articles in all journals with MSC (2000): 20C20

Additional Information

Morton E. Harris
Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455

Received by editor(s): October 9, 2002
Received by editor(s) in revised form: July 29, 2003
Published electronically: April 27, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society