THE α-INVARIANT ON CERTAIN SURFACES
WITH SYMMETRY GROUPS

JIAN SONG

Abstract. The global holomorphic α-invariant introduced by Tian is closely related to the existence of Kähler-Einstein metrics. We apply the result of Tian, Yau and Zelditch on polarized Kähler metrics to approximate plurisubharmonic functions and compute the α-invariant on $\mathbb{C}P^2 \# n\mathbb{C}P^2$ for $n = 1, 2, 3$.

1. Introduction

The global holomorphic invariant $\alpha_G(M)$ introduced by Tian [7], Tian and Yau [6] is closely related to the existence of Kähler-Einstein metrics. In his solution of the Calabi conjecture, Yau [12] proved the existence of a Kähler-Einstein metric on compact Kähler manifolds with negative or zero first Chern class. Kähler-Einstein metrics do not always exist in the case when the first Chern class is positive, for there are known obstructions such as the Futaki invariant. For a compact Kähler manifold M with positive first Chern class, Tian [7] proved that M admits a Kähler-Einstein metric if $\alpha_G(M) > \frac{n}{n+1}$, where $n = \text{dim } M$. In the case of compact complex surfaces, he proved that any compact complex surface with positive first Chern class admits a Kähler-Einstein metric except $\mathbb{C}P^2 \# 1\mathbb{C}P^2$ and $\mathbb{C}P^2 \# 2\mathbb{C}P^2$ [9]. Nevertheless, it would also be interesting to find the estimate of the α invariant for $\mathbb{C}P^2 \# 1\mathbb{C}P^2$ and $\mathbb{C}P^2 \# 2\mathbb{C}P^2$. In this paper, we apply the Tian-Yau-Zelditch expansion of the Bergman potential on polarized Kähler manifolds to approximate plurisubharmonic functions and compute the α-invariant of $\mathbb{C}P^2 \# n\mathbb{C}P^2$ for $n = 1, 2, 3$. In the case of $\mathbb{C}P^2 \# 2\mathbb{C}P^2$, it gives an improvement of Abdesselem’s result [1]. More precisely, we shall show that:

Theorem 1. $\alpha_G(\mathbb{C}P^2 \# 2\mathbb{C}P^2) = \frac{1}{3}$.

We will give the definitions of the automorphism group G and the α_G-invariant in Section 3.

Let (M, ω) be a compact Kähler manifold, where $\omega = \sqrt{-1}g_{ij}dz_i \wedge d\overline{z}_j$. We will also prove Tian’s conjecture on the generalized Moser-Trudinger inequality in the special case where $\alpha_G(M) > \frac{n}{n+1}$, for $n = \text{dim } M$. Let

$$P(M, \omega) = \left\{ \phi \mid \omega \phi = \omega + \sqrt{-1} \partial \overline{\partial} \phi > 0, \sup_M \phi = 0 \right\}.$$
Let F_ω and J_ω be the functionals defined on $P(M, \omega)$ by

$$F_\omega(\phi) = J_\omega(\phi) - \frac{1}{V} \int_M \phi \omega^n - \log \left(\frac{1}{V} \int_M e^{h_\omega - \phi} \omega^n \right),$$

$$J_\omega(\phi) = \frac{\sqrt{-1}}{V} \sum_{i=0}^{n-1} \frac{i+1}{n+1} \int_M \partial \phi \wedge \overline{\partial} \phi \wedge \omega^i \wedge \omega_{\omega}^{n-i-1}.$$

Assume (M, ω_{KE}) is a Kähler-Einstein manifold with positive first Chern class and $Ric(\omega_{KE}) = \omega_{KE}$. Then for any $\phi \in P(M, \omega_{KE})$, Ding and Tian [2] proved the following inequality of Moser-Trudinger type:

$$\frac{1}{V} \int_M e^{-\phi} \omega^n \leq C e^{J_\omega(\phi) - \frac{1}{2} \int_M \phi}.$$

Tian [10] also conjectured that $\frac{1}{2} \int_M e^{-\phi} \omega^n \leq C e^{(1-\delta)J_\omega(\phi) - \frac{1}{2} \int_M \phi}$ for $\delta > 0$ sufficiently small, if ϕ is perpendicular to Λ_1, the space of eigenfunctions of ω_{KE} with eigenvalue one.

We shall prove:

Theorem 2. Let (M, ω) be a Kähler manifold with positive first Chern class. Assume that $\alpha(M) > \frac{n}{n+1}$, so that M admits a Kähler-Einstein metric ω_{KE}, and there exist constants $\delta = \delta(n, \alpha(M))$ and $C = C(n, \lambda_2(\omega_{KE}) - 1, \alpha(M))$ such that for any $\phi \in P(M, \omega_{KE})$ which satisfies $\phi \perp \Lambda_1$, we have

$$F_{\omega_{KE}}(\phi) \geq \delta J_{\omega_{KE}}(\phi) - C.$$

Here $\lambda_2(\omega_{KE})$ is the least eigenvalue of ω_{KE} which is bigger than 1.

2. Holomorphic Approximation of Plurisubharmonic Functions

In this section, we will employ the technique in [8, 13] to obtain the approximation of plurisubharmonic functions by logarithms of holomorphic sections of line bundles. The Tian-Yau-Zelditch asymptotic expansion of the potential of the Bergman metric is given by the following theorem [13].

Theorem 2.1. Let M be a compact complex manifold of dimension n and let $(L, h) \to M$ be a positive Hermitian holomorphic line bundle. Let g be the Kähler metric on M corresponding to the Kähler form $\omega_g = Ric(h)$. For each $m \in \mathbb{N}$, h induces a Hermitian metric h_m on L^m. Let $\{S_0^m, S_1^m, \ldots, S_{d_m-1}^m\}$ be an orthonormal basis of $H^0(M, L^m)$, $d_m = \dim H^0(M, L^m)$, with respect to the inner product:

$$(S_1, S_2)_{h_m} = \int_M h_m(S_1(x), S_2(x))dV_g,$$

where $dV_g = \frac{1}{n!} \omega_g^n$ is the volume form of g. Then there is a complete asymptotic expansion

$$\sum_{i=0}^{d_m-1} ||S_i^m(x)||_{h_m}^2 \sim a_0(x)m^n + a_1(x)m^{n-1} + a_2(x)m^{n-2} + \ldots$$

for some smooth coefficients $a_j(x)$ with $a_0 = 1$. More precisely, for any k,

$$\sum_{i=0}^{d_m-1} ||S_i^m(x)||_{h_m}^2 - \sum_{j<R} a_j(x)m^{n-j}||_{C^k} \leq C_{R,k}m^{n-R}$$

where $C_{R,k}$ depends on R, k and the manifold M.
Let
\[\tilde{\omega}_g = \omega_g + \sqrt{-1} \partial \bar{\partial} \phi > 0, \]
\[\tilde{h} = h e^{-\phi}. \]
Let \(\tilde{h}_m \) be the induced Hermitian metric of \(\tilde{h} \) on \(L^m \), and let \(\{ \tilde{S}_0^m, \tilde{S}_1^m, \ldots, \tilde{S}_{d_m-1}^m \} \) be any orthonormal basis of \(H^0(M, L^m) \), where \(d_m = \dim H^0(M, L^m) \), with respect to the inner product
\[(S_1, S_2)_{\tilde{h}_m} = \int_M \tilde{h}_m(S_1(x), S_2(x)) dV_g. \]
By Theorem 2.1, we have
\[\sum_{i=0}^{d_m-1} ||\tilde{S}_i^m(x)||^2_{\tilde{h}_m} = \left(\sum_{i=0}^{d_m-1} ||\tilde{S}_i^m(x)||^2_{\tilde{h}_m} \right) e^{-m \phi}. \]
Thus
\[\phi - \frac{1}{m} \log \left(\sum_{i=0}^{d_m-1} ||\tilde{S}_i^m(x)||^2_{\tilde{h}_m} \right) = -\frac{1}{m} \log \left(\sum_{i=0}^{d_m-1} ||\tilde{S}_i^m(x)||^2_{\tilde{h}_m} \right). \]
As \(m \to +\infty \), we obtain for any positive integer \(R \)
\[\frac{1}{m} \log \left(\sum_{j<R} \tilde{a}_j(x) m^{n-j} \right) = \frac{1}{m} \log \left(\sum_{j<R} \tilde{a}_j(x) m^{n-j} \right) \]
\[= \frac{n}{m} \log m + \frac{1}{m} \log(1 + O(\frac{1}{m})) \to 0. \]
Thus we have the following corollary of the Tian-Yau-Zelditch expansion.

Corollary 2.1.
\[\left\| \phi - \frac{1}{m} \log \left(\sum_{i=0}^{d_m-1} ||\tilde{S}_i^m(x)||^2_{\tilde{h}_m} \right) \right\|_{C^k} \to 0, \text{ as } m \to +\infty. \]

In other words, any plurisubharmonic function can be approximated by the logarithms of holomorphic sections of \(L^m \).

3. Proof of Theorem 1

Let \(M \) be the blow-up of \(CP^2 \) at two points and \(\pi \) be its natural projection. Without loss of generality, we may assume the two points are \(p_1 = [0, 1, 0] \) and \(p_2 = [0, 0, 1] \). Then \(M \) is a subvariety of \(CP^2 \times CP^1 \times CP^1 \) defined by the equations
\[Z_0 X_1 = Z_1 X_0, \quad Z_0 Y_2 = Z_2 Y_0, \]
where \(Z_i, X_j, Y_k \) are the homogeneous coordinates on \(CP^2, CP^3 \) and \(CP^1 \), respectively.

Let \(G \) be the automorphism group acting on \(CP^2 \times CP^1 \times CP^1 \) generated by \(\theta_j \) and permutations \(\tau \ (0 \leq j \leq 2) \),
\[\theta_j : [Z_0, Z_j, Z_2] \times [X_0, X_1] \times [Y_0, Y_2] \to [Z_0, Z_j e^{i\theta}, Z_2] \times [X_0, X_1] \times [Y_0, Y_2] \]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
for \(\theta \in [0, 2\pi) \), and

\[
\tau : [Z_0, Z_1, Z_2] \times [X_0, X_1] \times [Y_0, Y_2] \rightarrow [Z_0, Z_2, Z_1] \times [Y_0, Y_2] \times [X_0, X_1].
\]

Let \(\pi_0, \pi_1, \pi_2 \) be the projection from \(CP^2 \cong CP^1 \times CP^1 \) onto \(CP^2, CP^1 \) and \(CP^1 \). Respectively define \(\omega \) by

\[
\omega = \pi_0^* \omega_0 + \pi_1^* \omega_1 + \pi_2^* \omega_2
\]

\[
= \sqrt{-1} \partial \overline{\partial} \log |Z_0|^2 + |Z_1|^2 + |Z_2|^2 + \sqrt{-1} \partial \overline{\partial} \log |X_0|^2 + |X_1|^2 + \sqrt{-1} \partial \overline{\partial} \log |Y_0|^2 + |Y_2|^2,
\]

where \(\omega_0, \omega_1, \omega_2 \) are the Fubini-Study metrics in \(CP^2, CP^1 \) and \(CP^1 \). By explicit calculation, it can be shown that the cohomological class of \(\omega \mid_M \) is in the first Chern class of \(M \) (see [1]).

Consider the divisor

\[
\{[0, Z_1, Z_2] \times CP^1 \times CP^1\} + \{CP^2 \times [1, 0] \times CP^1\} + \{CP^2 \times CP^1 \times [1, 0]\}
\]

which defines a line bundle \((L, h)\) on \(CP^2 \times CP^1 \times CP^1 \). The hermitian metric \(h \) is defined by

\[
h = \frac{1}{(|Z_0|^2 + |Z_1|^2 + |Z_2|^2)(|X_0|^2 + |X_1|^2)(|Y_0|^2 + |Y_2|^2)};
\]

then \((L, h) \mid_M \rightarrow M\) defines the anticanonical line bundle on \(M \) whose curvature form \(-\sqrt{-1} \partial \overline{\partial} \log h \) gives the first Chern class of \(M \).

Since \(M \setminus \{p_1, p_2\} \) is isomorphic to \(CP^2 \setminus \{p_1, p_2\} \), if we choose the inhomogeneous coordinates \((z_1, z_2) = [z_1, z_2] \) on \(CP^2 \), the Kähler metric

\[
\omega_{g_0} = \sqrt{-1} \partial \overline{\partial} \log (1 + |z_1|^2 + |z_2|^2) + \sqrt{-1} \partial \overline{\partial} \log (1 + |z_1|^2) + \sqrt{-1} \partial \overline{\partial} \log (1 + |z_2|^2)
\]

can be extended to a Kähler metric \(g_0 \) on \(M \) which belongs to \(c_1(M) \). If we take different inhomogeneous coordinates \((w_0, w_1) = [w_0, w_1, 1] \), the corresponding Kähler metric is

\[
\omega_{g_1} = \sqrt{-1} \partial \overline{\partial} \log (1 + |w_0|^2 + |w_1|^2) + \sqrt{-1} \partial \overline{\partial} \log (1 + |w_0|^2) + \sqrt{-1} \partial \overline{\partial} \log (1 + |w_1|^2)
\]

and we have

\[
\det g_0 = \frac{1}{(1 + |z_1|^2 + |z_2|^2)^3} + \frac{1}{(1 + |z_1|^2 + |z_2|^2)^2(1 + |z_1|^2)} + \frac{1}{(1 + |z_1|^2)^2(1 + |z_2|^2)^2},
\]

\[
\det g_1 = \frac{1}{(1 + |w_0|^2 + |w_1|^2)^3} + \frac{1}{(1 + |w_0|^2 + |w_1|^2)^2(1 + |w_0|^2)} + \frac{1}{(1 + |w_0|^2)^2(1 + |w_1|^2)^2}.
\]

Consider the line bundle \((L^N, h_N) \rightarrow CP^2 \times CP^1 \times CP^1 \). Then

\[
\dim H^0(CP^2 \times CP^1 \times CP^1, \mathcal{O}(L^N)) = \frac{(N + 1)^3(N + 2)}{2}
\]

and \(\{Z_0z_1Z_2x_0x_1x_1y_0y_0y_2y_2\}_{i_0+i_1+i_2=j_0+j_1=k_0+k_2=N} \) is an orthogonal basis for \(H^0(CP^2 \times CP^1 \times CP^1, \mathcal{O}(L^N)) \).

Let \(M_1 \) be the hypersurface of \(CP^2 \times CP^1 \times CP^1 \) defined by the equations

\[Z_0X_1 = Z_1X_0,\]
and M_2 the hypersurface of $CP^2 \times CP^1 \times CP^1$ defined by the equations

$$Z_0 Y_2 = Z_2 Y_0.$$

Then $M = M_1 \cap M_2$.

In view of the short exact sequences

$$0 \to \mathcal{O}(L^N - [M_1]) \to \mathcal{O}(L^N) \to \mathcal{O}(L^N|_{M_1}) \to 0,$$

$$0 \to \mathcal{O}(L^N|_{M_1} - [M]) \to \mathcal{O}(L^N|_{M_1}) \to \mathcal{O}(L^N|_{M}) \to 0$$

we can choose N sufficiently large so that

$$H^1(CP^2 \times CP^1 \times CP^1, \mathcal{O}(L^N - [M_1])) = H^1(M_1, \mathcal{O}(L^N|_{M_1} - [M])) = 0.$$

Then $H^0(CP^2 \times CP^1 \times CP^1, \mathcal{O}(L^N)) \to H^0(M_1, \mathcal{O}(L^N|_{M_1})) \to 0$,

$$H^0(M_1, \mathcal{O}(L^N|_{M_1})) \to H^0(M, \mathcal{O}(L^N|_{M})) \to 0$$

and thus

$$H^0(CP^2 \times CP^1 \times CP^1, \mathcal{O}(L^N)) \to H^0(M, \mathcal{O}(L^N|_{M})) \to 0.$$

Also we have $Z_0 Z_2 X_0 X_1 Y_0 Y_2|_{M} = Z_0^{i_0+j_0+k_0} Z_1^{i_1+j_1} Z_2^{i_2+k_2}$ and

$$||Z_0^{i_0} Z_2^{i_2} X_0 X_1 Y_0 Y_2||^2_{h_N} = \frac{\left| Z_0^{i_0} Z_1^{i_1} Z_2^{i_2} Z_0^{j_0} Z_1^{j_1} Z_2^{k_2} \right|^2}{((|Z_0|^2 + |Z_1|^2 + |Z_2|^2)(|Z_0|^2 + |Z_1|^2)(|Z_0|^2 + |Z_2|^2))^N}$$

on $CP^2\backslash \{p_1, p_2\}$. Therefore, $\{Z_0^{i_0} Z_1^{i_1} Z_2^{i_2} X_0 X_1 Y_0 Y_2|_{M}\}_{i_0+i_1+i_2+j_0+j_1+k_0+k_2=N}$ contains an orthogonal basis for $H^0(M, \mathcal{O}(L^N|_{M}))$ with respect to h^N and the G-invariant Kähler metric g on M.

By Corollary 2.1, for any $\varphi \in P_G(M, \omega_g)$, we have on $CP^2\backslash \{p_1, p_2\}$,

$$\varphi([Z_0, Z_1, Z_2]) = \lim_{N \to \infty} \frac{1}{N} \log \sum_{i_0+i_1+i_2=j_0+j_1+k_0+k_2=N} a_{(\varphi)i_0i_1j_0j_1k_0k_2}^{(N)} |Z_0^{i_0+j_0+k_0} Z_1^{i_1+j_1} Z_2^{i_2+k_2}|^2$$

for some coefficients $a_{(\varphi)i_0i_1j_0j_1k_0k_2}^{(N)}$ satisfying $a_{(\varphi)i_0i_1j_0j_1k_0k_2}^{(N)} = a_{(\varphi)i_0i_1j_0j_1k_0k_2}^{(N)}$ due to the group action by G.

Lemma 3.1. Using the notations above we have

$$\frac{1}{n} \log \sum_{i_0+i_1+i_2=j_0+j_1+k_0+k_2=n} |Z_0^{i_0+j_0+k_0} Z_1^{i_1+j_1} Z_2^{i_2+k_2}|^2$$

$$((|Z_0|^2 + |Z_1|^2 + |Z_2|^2)(|Z_0|^2 + |Z_1|^2)(|Z_0|^2 + |Z_2|^2))^n \leq 4$$

for any positive integer $n.$
Proof. On the patch $U_0 = \{Z_0 \neq 0\}$, let $z_1 = \frac{Z_1}{Z_0}$ and $z_2 = \frac{Z_2}{Z_0}$,
\[
\frac{1}{n} \log \left(\sum_{i_0 + i_1 + i_2 = j_0 + j_1 = k_0 + k_2 = n} |Z_0^{i_0+j_0+k_0}Z_1^{i_1+j_1}Z_2^{i_2+k_2}|^2 \right) \leq \frac{1}{n} \log \left(\sum_{i_0 + i_1 + i_2 = j_0 + j_1 = k_0 + k_2 = n} \frac{|Z_1^{i_1+j_1}Z_2^{i_2+k_2}|^2}{(1 + |z_1|^2)^n(1 + |z_2|^2)^n(1 + |z_2|^2)^n} \right)
\]
\[
\leq \frac{1}{n} \log \left(\sum_{i_0 + i_1 + i_2 = j_0 + j_1 = k_0 + k_2 = n} \frac{|Z_1^{i_1+j_1}Z_2^{i_2+k_2}|^2}{1 + |z_1^{i_1+j_1}z_2^{i_2+k_2}|^2} \right)
\]
\[
= \frac{1}{n} \log \left(\frac{(n+1)^{n+2}}{2} \right) \leq 4.
\]

This inequality also holds on the patch $U_1 = \{Z_1 \neq 0\}$ by continuity, and so the lemma is proved. \hfill \Box

Lemma 3.2. There exists $\varepsilon > 0$ such that for any $\varphi \in P_G(M, \omega_g)$ and N, there exist $n > N$, $i_0, i_1, i_2, j_0, j_1, k_0, k_2$ with $i_0 + i_1 + i_2 = j_0 + j_1 = k_0 + k_2 = n$, and $(a^{(n)}_{\varphi})_{i_0,i_1,i_2,j_0,j_1,k_0,k_2} > \varepsilon$.

Proof. Otherwise, for any $\varepsilon > 0$, there exist φ and N, such that for any $n > N$ and any $i_0, i_1, i_2, j_0, j_1, k_0, k_2$ satisfying $i_0 + i_1 + i_2 = j_0 + j_1 = k_0 + k_2 = n$, we have $(a^{(n)}_{\varphi})_{i_0,i_1,i_2,j_0,j_1,k_0,k_2} < \varepsilon$. By choosing n large enough and with the lemma above, we have
\[
\varphi([Z_0, Z_1, Z_2]) = \max |a^{(n)}_{\varphi})_{i_0,i_1,i_2,j_0,j_1,k_0,k_2}|^2 \leq \frac{1}{n} \log \left(\sum_{i_0 + i_1 + i_2 = j_0 + j_1 = k_0 + k_2 = n} \frac{|Z_0^{i_0+j_0+k_0}Z_1^{i_1+j_1}Z_2^{i_2+k_2}|^2}{(1 + |Z_0|^2 + |Z_1|^2 + |Z_2|^2)^n} + 2 \log \varepsilon + \varepsilon \right)
\]
\[
\leq \frac{1}{n} \log \left(\sum_{i_0 + i_1 + i_2 = j_0 + j_1 = k_0 + k_2 = n} \frac{|Z_0^{i_0+j_0+k_0}Z_1^{i_1+j_1}Z_2^{i_2+k_2}|^2}{(1 + |Z_0|^2 + |Z_1|^2 + |Z_2|^2)^n} + 2 \log \varepsilon + \varepsilon \right)
\]
Since ε could be arbitrarily small, the above inequality would imply that $\varphi \rightarrow -\infty$ uniformly, which contradicts the fact that $\sup_M \varphi = 0$. \hfill \Box

Proof of Theorem 1. We use notations as above; since $(a^{(n)}_{\varphi})_{i_0,i_1,i_2,j_0,j_1,k_0,k_2} > \varepsilon$, we have
\[
\varphi([Z_0, Z_1, Z_2]) = \lim_{N \to \infty} \frac{1}{N} \log \left(\sum_{i_0 + i_1 + i_2 = j_0 + j_1 = k_0 + k_2 = N} |a^{(N)}_{\varphi})_{i_0,i_1,i_2,j_0,j_1,k_0,k_2}|^2 \right)
\]
\[
\geq \frac{1}{N} \log \left(\sum_{i_0 + i_1 + i_2 = j_0 + j_1 = k_0 + k_2 = N} \frac{|Z_0^{i_0+j_0+k_0}Z_1^{i_1+j_1}Z_2^{i_2+k_2}|^2}{(1 + |Z_0|^2 + |Z_1|^2 + |Z_2|^2)^n} + \log \varepsilon \right)
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
\[\geq \frac{1}{N} \log \left(\frac{|Z_0|^m |Z_1|^{2N-m} |Z_2|^{\frac{2N-m}{2}} }{|Z_0|^2 + |Z_1|^2 + |Z_2|^2} \right)^{\alpha} + \log \epsilon \]
\[\geq \log \frac{|Z_0|^m |Z_1|^{2N-m} |Z_2|^{\frac{2N-m}{2}} }{|Z_0|^2 + |Z_1|^2 + |Z_2|^2} + \log \epsilon, \]

where \(i_0 + j_0 + k_0 = m, i_1 + j_1 + i_2 + k_2 = 3N - m \).

On the patch \(U_0 = \{ Z_0 \neq 0 \} \),
\[
\int_{U_0 \cap \{ 0 < |z_1|, |z_2| < 1 \}} e^{-\alpha \varphi_*} \omega_{g_0}^2
\leq C_1 \int_{0 < |z_1|, |z_2| < 1} e^{-\alpha \log \left(\frac{|z_0|^{2m} |z_1|^{3N-m} |z_2|^{\frac{3N-m}{2}}}{|z_0|^2 + |z_1|^2 + |z_2|^2} \right)} \omega_{g_0}^2
= C_1 \int_{0 < |z_1|, |z_2| < 1} \frac{(1 + |z_1|^2 + |z_2|^2)^\alpha (1 + |z_1|^2)^\alpha (1 + |z_2|^2)^\alpha}{|z_1|^{3N-m} |z_2|^{\frac{3N-m}{2}}} \omega_{g_0}^2
\leq C_2 \int_{0 < |z_1|, |z_2| < 1} \frac{1}{|z_1|^{3N-m} |z_2|^{\frac{3N-m}{2}}} dz_1 \wedge d\bar{z}_1 \wedge dz_2 \wedge d\bar{z}_2,
\]

where \(C_1, C_2 \) and \(C_3 \) are constants depending only on \(\alpha \) and \(\epsilon \).

On the patch \(U_2 = \{ Z_2 \neq 0 \} \),
\[
\int_{U_2 \cap \{ 0 < |w_0|, |w_1| \leq 1 \}} e^{-\alpha \varphi_*} \omega_{g_1}^2
\leq C_4 \int_{0 < |w_0|, |w_1| \leq 1} e^{-\alpha \log \left(\frac{|w_0|^{2m} |w_1|^2}{|w_0|^2 + |w_1|^2} \right)} \omega_{g_1}^2
= C_4 \int_{0 < |w_0|, |w_1| \leq 1} \frac{(1 + |w_0|^2 + |w_1|^2)^\alpha (1 + |w_0|^2)^\alpha (1 + |w_1|^2)^\alpha}{|w_0|^{3N-m} |w_1|^2} \omega_{g_1}^2
\leq C_5 \int_{0 < |w_0|, |w_1| \leq 1} \frac{1}{|w_0|^{3N-m} |w_1|^{3N-m}} (|w_0|^2 + |w_1|^2)^{1-\alpha} dw_0 \wedge d\overline{w}_0
\leq C_6 \int_{0 < |w_0|, |w_1| \leq 1} \frac{1}{s^{3N-m} (s+\overline{s})^{3N-m}} (s+\overline{s})^{1-\alpha} dsdt
\leq C_6 \int_{s=0}^{1} \int_{t=0}^{1} \frac{1}{s^{3N-\alpha} (s+\overline{s})^{3N-\alpha} (s+\overline{s})^{1-\alpha}} dsdt,
\]

where \(p + q = 1 \) and \(C_4, C_5, C_6 \) are constants depending only on \(\alpha \) and \(\epsilon \).
Case 1: If $1 \leq \frac{m}{N} \leq 3$, we can choose $\alpha < \min\left(\frac{2}{3}, \frac{1}{2} - \frac{p}{q}\right)$ so that
\[
\frac{\alpha m}{N} + (1 - \alpha)p < 1, \\
3\alpha - 1 < 1, \\
\frac{3}{2}\alpha - \frac{\alpha m}{2N} + (1 - \alpha)q < 1.
\]

Case 2: If $0 < \frac{m}{N} < 1$, we can choose $\alpha < \min\left(\frac{2}{3}, \frac{1}{2} - \frac{p}{q}\right)$ so that
\[
\frac{\alpha m}{N} + (1 - \alpha)p < 1, \\
3\alpha - 1 < 1, \\
\frac{3}{2}\alpha - \frac{\alpha m}{2N} + (1 - \alpha)q < 1.
\]

So we could choose any $\alpha < \frac{1}{4}$, which implies that $\alpha_G(M, \omega) \geq \frac{1}{4}$.

Conversely, we choose
\[
\varphi_\varepsilon = \log\left(\frac{|Z_0|^6}{(|Z_0|^2 + |Z_1|^2 + |Z_2|^2)(|Z_0|^2 + |Z_1|^2)(|Z_0|^2 + |Z_2|^2)} + \varepsilon\right) - \log(1 + \varepsilon)
\in \mathcal{P}_G(M, \omega).
\]

Then we have $\sup_M \varphi_\varepsilon = 0$ and $\varphi_\varepsilon = \log \frac{1}{1 + \varepsilon}$ on the exceptional divisors. Furthermore, we have

\[
\lim_{\varepsilon \to 0} \int_M e^{-\alpha \varphi_\varepsilon} \omega^2 = \infty, \quad \text{for any } \alpha > \frac{1}{3}.
\]

Hence we have shown $\alpha_G(M, \omega) = \frac{1}{4}$.

We can also apply the above arguments for CP^n ($n \geq 2$), $CP^2#1\overline{CP^2}$ and $CP^2#3\overline{CP^2}$.

(i) Let $M = CP^n$ and let G_n be the automorphism group acting on M, generated by θ_j and permutations $\tau_{i,j}$ ($0 \leq i < j \leq n$),

\[
\theta_j : [Z_0, ..., Z_j, ..., Z_n] \to [Z_0, ..., Z_j e^{i\theta}, ..., Z_n]
\]

for $\theta \in [0, 2\pi)$, and

\[
\tau_{i,j} : [Z_0, ..., Z_i, ..., Z_j, ..., Z_n] \to [Z_0, ..., Z_j, ..., Z_i, ..., Z_n].
\]

Theorem 3.1. $\alpha_{G_n}(CP^n) = 1$.

(ii) Let M be the blow-up of CP^2 at 3 points which are not collinear. Then we can assume that these 3 points are $[1, 0, 0]$, $[0, 1, 0]$ and $[0, 0, 1]$. Let $G(3)$ be the automorphism group acting on M, generated by θ_j and permutations $\tau_{i,j}$ ($0 \leq i < j \leq 2$),

\[
\theta_j : [Z_0, Z_j, Z_2] \to [Z_0, Z_j e^{i\theta}, Z_2]
\]

for $\theta \in [0, 2\pi)$, and

\[
\tau_{i,j} : [..., Z_i, ..., Z_j, ...] \to [..., Z_j, ..., Z_i, ...].
\]

Theorem 3.2. $\alpha_{G(3)}(CP^2#3\overline{CP^2}) = 1$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
(iii) Let M be the blow-up of CP^2 at one point $[1,0,0]$ and $G(1)$ be the automorphism group acting on M, generated by θ_j and permutations τ ($0 \leq i \leq 2$),

$$ \theta_j : [Z_0, Z_j, Z_2] \to [Z_0, Z_j e^{i\theta}, Z_2] $$

for $\theta \in [0, 2\pi)$, and

$$ \tau : [Z_0, Z_1, Z_2] \to [Z_0, Z_2, Z_1]. $$

Theorem 3.3. $\alpha_{G(1)}(CP^2 \# CP^2) = \frac{1}{2}$.

Also the proof above shows that the sequence of the holomorphic invariants $\{\alpha_{G(m)}(M)\}_m$ defined by Tian [8] on CP^n ($n \geq 2$), $CP^2 \# kCP^2$ ($k = 1, 2, 3$) is stationary.

4. Proof of Theorem 2

In this section, we will prove the generalized Moser-Trudinger inequality on any Kähler manifold M of dimension n whose (M) is greater than $\frac{n^2 + 1}{n+1}$. The following theorem is due to Tian and Zhu [11].

Theorem 4.1. Let (M, ω) be a Kähler-Einstein manifold with $\text{Ric}(\omega) = \omega$; then there exist constants $\delta = \delta(n)$ and $C = C(n, \lambda_2(\omega) - 1) \geq 0$ such that for any $\phi \in P(M, \omega)$ which satisfies $\phi \perp \Lambda_1$, we have

$$ F_\omega(\phi) \geq J_\omega(\phi)^{\delta} - C, $$

which is the same as

$$ \frac{1}{V} \int_M e^{-\phi} \omega^n \leq Ce^{J_\omega(\phi)^{\delta} + \int_M \phi \omega^n - J_\omega(\phi)^{\delta}}. $$

This implies in particular the Moser-Trudinger inequality on S^2, which reads

$$ \frac{1}{4\pi} \int_{S^2} e^{-\phi} \omega \leq \exp \left\{ \int_{S^2} |\nabla \phi|^2 \omega - \frac{1}{16} \int_{S^2} \phi \right\}. $$

For any $\phi \in P(M, \omega)$, put $\omega' = \omega_\phi = \omega + \sqrt{-1} \partial \bar{\partial} \phi$ and $\text{Ric}(\omega) = \omega + \sqrt{-1} \partial \bar{\partial} h_\omega$. Consider the Monge-Ampère equation

$$ (\omega' + \sqrt{-1} \partial \bar{\partial} \psi)^n = e^{h_\omega - t \psi} \omega^n. $$

We will use the continuity method backwards and let ϕ_t be a smooth family which solve the above equation.

The following lemmas are well known [10], but we add the proofs for the sake of completeness.

Lemma 4.1. $\text{Ric}(\omega_t) \geq t \omega_t$ and we have equality if and only if $t = 1$, where $\omega_t = \omega + \phi_t$ and ϕ_t solves the Monge-Ampère equation at t.

Proof.

$$ \text{Ric}(\omega_t) = -\sqrt{-1} \partial \bar{\partial} \log \omega_t^n = -\sqrt{-1} \partial \bar{\partial} \log \frac{\omega_t^n}{\omega^n} + \text{Ric}(\omega) $$

$$ = -\sqrt{-1} \partial \bar{\partial} (h_\omega - t \phi_t) + \omega + \sqrt{-1} \partial \bar{\partial} h_\omega $$

$$ = \omega + t \phi_t = t \omega_t + (1 - t) \omega \geq t \omega_t. $$

\square
Lemma 4.2. For any $\phi \in P(M, \omega)$, if the Green's function of $\omega' = \omega + \sqrt{-1} \partial \overline{\partial} \phi$ is bounded from below, we have:

$$-\inf_M \phi \leq \frac{1}{V} \int_M (-\phi) \omega^n + C.$$

Proof. Since $\omega + \sqrt{-1} \partial \overline{\partial} \phi = \omega'$ and $\omega' - \sqrt{-1} \partial \overline{\partial} \phi > 0$, we have $\Delta \omega \phi \leq n$, and

$$-\phi = \frac{1}{V} \int_M (\phi) \omega^n + \frac{1}{V} \int_M \Delta \omega' \phi (y) G_{\omega'}(x, y) \omega^n$$
$$\leq \frac{1}{V} \int_M (\phi) \omega^n + \frac{1}{V} \int_M n(G_{\omega'}(x, y) - \inf G_{\omega'}(x, y)) \omega^n$$
$$\leq \frac{1}{V} \int_M (\phi) \omega^n + C.$$

Let (M, ω) be a Kähler-Einstein manifold with $\text{Ric}(\omega) = \omega$ and let $P(M, \omega, K) = \{ \phi \in P(M, \omega) | G_{\omega + \sqrt{-1} \partial \overline{\partial} \phi}(x, y) \geq -K \}$. Then we have:

Proposition 4.1. Let (M, ω) be a Kähler-Einstein manifold with $\text{Ric}(\omega) = \omega$. If $\alpha(M) > \frac{n}{n+1}$, then there exist constants $\delta(n, \alpha, K)$ and $C(n, \alpha, \lambda_2(\omega) - 1, K)$ such that for any $\phi \in P(M, \omega, K)$, we have

$$F_{\omega}(\phi) \geq \delta J_{\omega}(\phi) - C.$$

Proof. Let $\omega' = \omega + \delta \overline{\partial} \phi$, where $\phi \in P(M, \omega, K)$. We have

$$\frac{1}{V} \int_M e^{-\alpha \phi} \omega_n = \frac{1}{V} \int_M e^{-\alpha_1 \phi_1} \phi \omega_n$$
$$\leq \frac{1}{V} \int_M e^{-\alpha_1 \phi_1} \phi \omega_n e^{-\epsilon \inf M \phi},$$

taking $p = \frac{1}{\alpha_1}, q = \frac{1}{1-\alpha_1}$, we have

$$\frac{1}{V} \int_M e^{-\alpha_1 \phi_1} \phi \omega_n \leq \frac{1}{V} \left(\int_M e^{-\alpha_1 \phi_1} \phi \omega_n \right)^{1/p} \left(\int_M e^{-\alpha_2 \phi_2} \omega_n \right)^{1/q}$$

$$= \frac{1}{V} \left(\int_M e^{-\phi_1 \omega_n} \right)^{\alpha_1} \left(\int_M e^{-\alpha_2 \phi_2} \omega_n \right)^{1-\alpha_1}$$

$$\leq Ce^{\alpha_1 J_{\omega}(\phi) - \frac{\alpha_1}{\alpha_1} f_{\omega} \phi \omega_n} \left(\int_M e^{-\alpha_2 \phi_2} \omega_n \right)^{1-\alpha_1}.$$

By Lemma 4.2,

$$e^{-\epsilon \inf M \phi} \leq e^{\epsilon \int_M (-\phi) \omega^n + C}$$

$$= e^{\epsilon \int_M (-\phi) - \frac{\alpha_1}{\alpha_1} f_{\omega} \phi \omega_n + C}$$

$$\leq e^{\epsilon(n+1) J_{\omega}(\phi) - \frac{\alpha_1}{\alpha_1} f_{\omega} \phi \omega_n + C}.$$
By Hölder’s inequality,
\[
\frac{1}{V} \int_M e^{-\phi} \omega^n \leq \left(\frac{1}{V} \int_M e^{-\alpha \phi} \omega^n \right)^{\frac{1}{\alpha}} \\
\leq C e^{\frac{\alpha + (n+1)}{\alpha} \int_M \phi \omega^n} \left(\int_M e^{-\frac{\alpha}{\alpha-1} \sup \phi} \omega^n \right)^{\frac{\alpha-1}{\alpha}} \\
= C e^{\frac{\alpha + (n+1)}{\alpha} \int_M \phi \omega^n} + \frac{\alpha}{\alpha-1} \int_M (\phi - \sup \phi) \omega^n} \left(\int_M e^{-\frac{\alpha}{\alpha-1} \sup \phi} \omega^n \right)^{\frac{\alpha-1}{\alpha}} \\
\leq C e^{\frac{\alpha + (n+1)}{\alpha} \int_M \phi \omega^n} + \frac{1}{\alpha-1} \int_M \phi \omega^n} \left(\int_M e^{-\frac{\alpha}{\alpha-1} \sup \phi} \omega^n \right)^{\frac{\alpha-1}{\alpha}}.
\]

We need to determine $\alpha_1, \alpha_2, \varepsilon$ which satisfy the following conditions:
\[
\alpha = \alpha_1 + \alpha_2 + \varepsilon > 1, \\
\alpha > \alpha_1 + (n+1)\varepsilon, \\
1 > \alpha_1.
\]

So we will choose
\[
\alpha_2 = n\varepsilon + \varepsilon', \\
\alpha_1 = 1 - \alpha_2 - \varepsilon + \varepsilon'' = 1 - (n+1)\varepsilon - \varepsilon' + \varepsilon'',
\]
where $\varepsilon, \varepsilon', \varepsilon'' < 1$, and $\varepsilon' = o(\varepsilon)$, $\varepsilon'' = o(\varepsilon)$.

Since $\alpha(M) > \frac{n}{n+1}$, we can choose $\varepsilon, \varepsilon', \varepsilon''$ small enough; then we have
\[
\frac{\alpha_2}{1 - \alpha_1} = \frac{n\varepsilon + \varepsilon'}{(n+1)\varepsilon + \varepsilon' - \varepsilon''} < \alpha(M)
\]
and
\[
\int_M e^{-\frac{\alpha}{\alpha-1} \sup \phi} \omega^n < Const.
\]

Combined with the inequalities above, we have
\[
\frac{1}{V} \int_M e^{-\phi} \omega^n \leq C e^{(1-\delta)\int_M \phi \omega^n}.
\]

This proves the lemma. \qed

Proof of Theorem 2. We assume ω is the Kähler-Einstein metric of M. For any $\phi \in P(M, \omega)$, put $\omega' = \omega + \sqrt{-1} \partial \bar{\partial} \phi$. Consider $(\omega' + \sqrt{-1} \partial \bar{\partial} \psi) = e^{h_{\omega'} + t\psi}$. By solving the Monge-Ampère equation backwards, we get the solutions ϕ_t, and $\phi_1 = -\phi$.

For $t > \frac{1}{2}$, let $\omega_t = \omega' + \sqrt{-1} \partial \bar{\partial} \phi_t = \omega + \sqrt{-1} \partial \bar{\partial} (\phi_t - \phi_1)$; by Lemma 4.1,
\[
\text{Ric}(\omega_t) \geq \frac{1}{2} \omega_t,
\]
which shows that the Green function of ω_t is uniformly bounded from below. Thus by Proposition 4.1 and the calculation in [1], we have
\[
F_\omega(\phi_t - \phi_1) \geq \delta \int_M (\phi_t - \phi_1) - C \\
\geq C_1 \text{osc}_M (\phi_t - \phi_1) - C_2,
\]
and consequently,
\[
n(1-t)J_\omega(\phi) = n(1-t)J_\omega(\phi_1) \\
\geq (1-t)(J_\omega(\phi_t) - J_\omega(\phi_1)) \\
\geq F_\omega(\phi_t) - F_\omega(\phi_1) \\
= F_\omega(\phi_t - \phi_1) \\
\geq C_1 \text{osc}_M (\phi_t - \phi_1) - C_2.
\]

Thus we have
\[
F_\omega(\phi) = -F_\omega(-\phi) \\
\geq \int_0^1 (I_{\omega_t}(\phi_t) - J_\omega(\phi_t))dt \\
\geq (1-t)(I_{\omega_t}(\phi_t) - J_\omega(\phi_t)) \\
\geq \frac{1-t}{n} J_\omega(\phi_t) \\
\geq \frac{1-t}{n} J_\omega(\phi_1) - 2(1-t)(C_1 \text{osc}_M (\phi_t - \phi_1) - C_2) \\
\geq \frac{1-t}{n} J_\omega(\phi) - 2(1-t)^2 n C_1 J_\omega(\phi) - C_3.
\]

The theorem follows by choosing \((1-t) < \frac{1}{2n^2 C_1}\).

ACKNOWLEDGEMENTS

The author deeply thanks his advisor, Professor D.H. Phong for his constant encouragement and help. He also thanks Professor G. Tian for his suggestion on this work. This paper is part of the author’s future Ph.D. thesis in the Mathematical Department of Columbia University.

REFERENCES

Department of Mathematics, Columbia University, New York, New York 10027

E-mail address: jsong@math.columbia.edu