Dupin indicatrices and families of curve congruences
Authors:
J. W. Bruce and F. Tari
Journal:
Trans. Amer. Math. Soc. 357 (2005), 267285
MSC (2000):
Primary 53A05, 34A09
Published electronically:
April 16, 2004
MathSciNet review:
2098095
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We study a number of natural families of binary differential equations (BDE's) on a smooth surface in . One, introduced by G. J. Fletcher in 1996, interpolates between the asymptotic and principal BDE's, another between the characteristic and principal BDE's. The locus of singular points of the members of these families determine curves on the surface. In these two cases they are the tangency points of the discriminant sets (given by a fixed ratio of principle curvatures) with the characteristic (resp. asymptotic) BDE. More generally, we consider a natural class of BDE's on such a surface , and show how the pencil of BDE's joining certain pairs are related to a third BDE of the given class, the socalled polar BDE. This explains, in particular, why the principal, asymptotic and characteristic BDE's are intimately related.
 1.
J.
W. Bruce and D.
L. Fidal, On binary differential equations and umbilics, Proc.
Roy. Soc. Edinburgh Sect. A 111 (1989), no. 12,
147–168. MR
985996 (90e:58141), http://dx.doi.org/10.1017/S0308210500025087
 2.
J.
W. Bruce, G.
J. Fletcher, and F.
Tari, Bifurcations of implicit differential equations, Proc.
Roy. Soc. Edinburgh Sect. A 130 (2000), no. 3,
485–506. MR 1769238
(2001f:34005)
 3.
J.W. Bruce, G. J. Fletcher and F. Tari, Zero curves of families of curve congruences, to appear in the Proceedings of the Workshop on Real and Complex Singularities (T. Gaffney & M.A.S. Ruas, Editors), ICMC  USP  São Carlos, Brazil, 29 July  02 August, 2002.
 4.
J.
W. Bruce and F.
Tari, On binary differential equations, Nonlinearity
8 (1995), no. 2, 255–271. MR 1328597
(96d:58124)
 5.
J.
W. Bruce and F.
Tari, Implicit differential equations from the singularity theory
viewpoint, Singularities and differential equations (Warsaw, 1993)
Banach Center Publ., vol. 33, Polish Acad. Sci. Inst. Math., Warsaw,
1996, pp. 23–38. MR 1449143
(98d:34001)
 6.
J.
W. Bruce and F.
Tari, Generic 1parameter families of binary differential equations
of Morse type, Discrete Contin. Dynam. Systems 3
(1997), no. 1, 79–90. MR 1422540
(98h:58123)
 7.
J.
W. Bruce and F.
Tari, On the multiplicity of implicit differential equations,
J. Differential Equations 148 (1998), no. 1,
122–147. MR 1637529
(2001e:34004), http://dx.doi.org/10.1006/jdeq.1998.3454
 8.
J.
W. Bruce and F.
Tari, Duality and implicit differential equations,
Nonlinearity 13 (2000), no. 3, 791–811. MR 1759000
(2001a:34007), http://dx.doi.org/10.1088/09517715/13/3/315
 9.
M. Cibrario, Sulla reduzione a forma delle equationi lineari alle derviate parziale di secondo ordine di tipo misto, Accademia di Scienze e Lettere, Instituto Lombardo Redicconti, 65 (1932), 889906.
 10.
Lak
Dara, Singularités génériques des
équations différentielles multiformes, Bol. Soc. Brasil.
Mat. 6 (1975), no. 2, 95–128 (French). MR 0488153
(58 #7720)
 11.
A.
A. Davydov, The normal form of a differential equation, that is not
solved with respect to the derivative, in the neighborhood of its singular
point, Funktsional. Anal. i Prilozhen. 19 (1985),
no. 2, 1–10, 96 (Russian). MR 800916
(87d:58116)
 12.
A.
A. Davydov and L.
OrtizBobadilla, Smooth normal forms of folded elementary singular
points, J. Dynam. Control Systems 1 (1995),
no. 4, 463–482. MR 1364560
(97a:58169), http://dx.doi.org/10.1007/BF02255893
 13.
A.
A. Davydov and E.
RosalesGonzález, Smooth normal forms of folded resonance
saddles and nodes and complete classification of generic linear second
order PDE’s on the plane, International Conference on
Differential Equations (Lisboa, 1995) World Sci. Publ., River Edge, NJ,
1998, pp. 59–68. MR 1639319
(99g:35009)
 14.
A.A. Davydov, Qualitative control theory, Translations of Mathematical Monographs 142, AMS, Providence, RI, 1994.
 15.
L.P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Ginn and Company, 1909.
 16.
G.J. Fletcher, Geometrical problems in computer vision, Ph.D. thesis, Liverpool University, 1996.
 17.
Ronaldo
Garcia, Carlos
Gutierrez, and Jorge
Sotomayor, Lines of principal curvature around umbilics and Whitney
umbrellas, Tohoku Math. J. (2) 52 (2000), no. 2,
163–172. MR 1756092
(2001i:58083), http://dx.doi.org/10.2748/tmj/1178224605
 18.
R.
Garcia, C.
Gutierrez, and J.
Sotomayor, Structural stability of asymptotic lines on surfaces
immersed in 𝐑³, Bull. Sci. Math. 123
(1999), no. 8, 599–622 (English, with English and French
summaries). MR
1725206 (2000j:37019), http://dx.doi.org/10.1016/S00074497(99)001165
 19.
R. Garcia and J. Sotomayor, Geometric mean curvature lines on surfaces immersed in , Preprint, 2003.
 20.
R. Garcia and J. Sotomayor, Harmonic mean curvature lines on surfaces immersed in , Preprint, 2003.
 21.
Carlos
Gutierrez and Jorge
Sotomayor, Lines of curvature, umbilic points and
Carathéodory conjecture, Resenhas 3 (1998),
no. 3, 291–322. MR 1633013
(2000b:53005)
 22.
Carlos
Gutierrez and Victor
Guíñez, Positive quadratic differential forms:
linearization, finite determinacy and versal unfolding, Ann. Fac. Sci.
Toulouse Math. (6) 5 (1996), no. 4, 661–690
(English, with English and French summaries). MR 1473078
(98h:58021)
 23.
Víctor
Guíñez, Positive quadratic differential forms
and foliations with singularities on surfaces, Trans. Amer. Math. Soc. 309 (1988), no. 2, 477–502. MR 961601
(89h:57021), http://dx.doi.org/10.1090/S00029947198809616014
 24.
V.
Guíñez, Locally stable singularities for positive
quadratic differential forms, J. Differential Equations
110 (1994), no. 1, 1–37. MR 1275745
(95d:58105), http://dx.doi.org/10.1006/jdeq.1994.1057
 25.
Víctor
Guíñez, Rank two codimension 1 singularities of
positive quadratic differential forms, Nonlinearity
10 (1997), no. 3, 631–654. MR 1448580
(98f:58144), http://dx.doi.org/10.1088/09517715/10/3/004
 26.
V. Guíñez and C. Gutierrez, Rank1 codimension one singularities of positive quadratic differential forms, Preprint, 2003.
 27.
A.
Hayakawa, G.
Ishikawa, S.
Izumiya, and K.
Yamaguchi, Classification of generic integral diagrams and first
order ordinary differential equations, Internat. J. Math.
5 (1994), no. 4, 447–489. MR 1284566
(95e:58026), http://dx.doi.org/10.1142/S0129167X94000255
 28.
A.
G. Kuz′min, Nonclassical equations of mixed type and their
applications in gas dynamics, International Series of Numerical
Mathematics, vol. 109, Birkhäuser Verlag, Basel, 1992. Translated
and revised from the Russian by the author. MR 1193914
(93h:35137)
 29.
J.
Sotomayor and C.
Gutierrez, Structurally stable configurations of lines of principal
curvature, Bifurcation, ergodic theory and applications (Dijon, 1981)
Astérisque, vol. 98, Soc. Math. France, Paris, 1982,
pp. 195–215. MR 724448
(85h:58006)
 30.
R.
Thom, Sur les équations différentielles multiformes
et leurs intégrales singulières, Bol. Soc. Brasil. Mat.
3 (1972), no. 1, 1–11 (French). MR 0343311
(49 #8053)
 31.
P.
Hilton (ed.), Structural stability, the theory of catastrophes, and
applications in the sciences, Lecture Notes in Mathematics, Vol. 525,
SpringerVerlag, Berlin, 1976. MR 0515875
(58 #24311)
 1.
 J.W. Bruce and D. Fidal, On binary differential equations and umbilics, Proc. Royal Soc. Edinburgh, 111A (1989), 147168. MR 90e:58141
 2.
 J.W. Bruce, G.J. Fletcher and F. Tari, Bifurcations of implicit differential equations, Proc. Royal Soc. Edinburgh, 130A (2000), 485506. MR 2001f:34005
 3.
 J.W. Bruce, G. J. Fletcher and F. Tari, Zero curves of families of curve congruences, to appear in the Proceedings of the Workshop on Real and Complex Singularities (T. Gaffney & M.A.S. Ruas, Editors), ICMC  USP  São Carlos, Brazil, 29 July  02 August, 2002.
 4.
 J.W. Bruce and F. Tari, On binary differential equations, Nonlinearity, 8 (1995), 255271. MR 96d:58124
 5.
 J.W. Bruce and F. Tari, Implicit differential equations from the singularity theory viewpoint, Singularities and Differential Equations, Banach Centre Publications, Volume 33, 2338, Institute of Mathematics, Polish Academy of Sciences, Warsaw, 1996. MR 98d:34001
 6.
 J.W. Bruce and F. Tari, Generic 1parameter families of binary differential equations of Morse type, Discrete and Continuous Dynamical Systems, Vol. 3, No. 1 (1997), 7990. MR 98h:58123
 7.
 J.W. Bruce and F. Tari, On the multiplicity of binary differential equations, J. of Differential Equations, 148 (1998), 122147. MR 2001e:34004
 8.
 J.W. Bruce and F. Tari, Duality and implicit differential equations, Nonlinearity, Vol. 13, No. 3 (2000), 791812. MR 2001a:34007
 9.
 M. Cibrario, Sulla reduzione a forma delle equationi lineari alle derviate parziale di secondo ordine di tipo misto, Accademia di Scienze e Lettere, Instituto Lombardo Redicconti, 65 (1932), 889906.
 10.
 L. Dara, Singularites generiques des equations differentielles multiforms, Bol. Soc. Bras. Mat., No. 6 (1975), 95129. MR 58:7720
 11.
 A.A. Davydov, Normal forms of differential equations unresolved with respect to derivatives in a neighbourhood of its singular point, Funct. Anal. Appl., 19 (1985), 110. MR 87d:58116
 12.
 A.A. Davydov and L. OrtizBobadilla, Smooth normal forms of folded elementary singular points, J. Dynam. Control Systems, 1, no. 4 (1995), 463482. MR 97a:58169
 13.
 A.A. Davydov and E. RosalesGonzález, Smooth normal forms of folded resonance saddles and nodes and complete classification of generic linear second order PDE's on the plane, International Conference on Differential Equations (Lisboa, 1995), 5968, World Sci. Publishing, 1998. MR 99g:35009
 14.
 A.A. Davydov, Qualitative control theory, Translations of Mathematical Monographs 142, AMS, Providence, RI, 1994.
 15.
 L.P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Ginn and Company, 1909.
 16.
 G.J. Fletcher, Geometrical problems in computer vision, Ph.D. thesis, Liverpool University, 1996.
 17.
 R. Garcia, C. Gutierrez, J. Sotomayor, Lines of principal curvature around umbilics and Whitney umbrellas, Tohoku Math. J., (2) 52 (2000), no. 2, 163172. MR 2001i:58083
 18.
 R. Garcia, C. Gutierrez, J. Sotomayor, Structural stability of asymptotic lines on surfaces immersed in , Bull. Sci. Math., 123 (1999), no. 8, 599622. MR 2000j:37019
 19.
 R. Garcia and J. Sotomayor, Geometric mean curvature lines on surfaces immersed in , Preprint, 2003.
 20.
 R. Garcia and J. Sotomayor, Harmonic mean curvature lines on surfaces immersed in , Preprint, 2003.
 21.
 C. Gutierrez and J. Sotomayor, Lines of curvature, umbilic points and Carathéodory conjecture, Resenhas 3 (1998), no. 3, 291322. MR 2000b:53005
 22.
 C. Gutierrez and V. Guíñez, Positive quadratic differential forms: linearization, finite determinacy and versal unfolding, Ann. Fac. Sci. Toulouse Math., (6) 5 (1996), no. 4, 661690. MR 98h:58021
 23.
 V. Guíñez, Positive quadratic differential forms and foliations with singularities on surfaces Trans. Amer. Math. Soc., 309 (1988), 447502. MR 89h:57021
 24.
 V. Guíñez, Locally stable singularities for positive quadratic differential forms, J. Differential Equations, 110 (1994), no. 1, 137. MR 95d:58105
 25.
 V. Guíñez, Rank two codimension singularities of positive quadratic differential forms, Nonlinearity, 10 (1997), no. 3, 631654. MR 98f:58144
 26.
 V. Guíñez and C. Gutierrez, Rank1 codimension one singularities of positive quadratic differential forms, Preprint, 2003.
 27.
 A. Hayakawa, G. Ishikawa, S. Izumiya, K. Yamaguchi, Classification of generic integral diagrams and first order ordinary differential equations, Internat. J. Math., 5 (1994), no. 4, 447489. MR 95e:58026
 28.
 A.G. Kuz'min, Nonclassical equations of mixed type and their applications in gas dynamics, International Series of Numerical Mathematics, 109, Birkhäuser Verlag, Basel, 1992. MR 93h:35137
 29.
 J. Sotomayor and C. Gutierrez, Structurally stable configurations of lines of principal curvature, Bifurcation, ergodic theory and applications (Dijon, 1981), 195215, Astérisque, 9899, Soc. Math. France, Paris, 1982. MR 85h:58006
 30.
 R. Thom, Sur les equations differentielles multiform et leur integrales singulieres, Bol. Soc. Bras. Mat., Vol. 3, No. 1 (1971), 111. MR 49:8053
 31.
 F. Takens, Constrained equations; a study of implicit differential equations and their discontinuous solutions, in: Structural stability, the theory of catastrophes, and applications in the sciences. LNM 525, SpringerVerlag, 1976. MR 58:24311
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
53A05,
34A09
Retrieve articles in all journals
with MSC (2000):
53A05,
34A09
Additional Information
J. W. Bruce
Affiliation:
Division of Pure Mathematics, Department of Mathematical Sciences, University of Liverpool, Mathematics and Oceanography Building, Peach Street, Liverpool L69 7ZL, United Kingdom
Address at time of publication:
Deputy ViceChancellor, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
Email:
jwbruce@liv.ac.uk, j.w.bruce@hull.ac.uk
F. Tari
Affiliation:
Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Avenida Trabalhador Sãocarlense, 400 Centro, Caixa Postal 668, CEP 13560970, São Carlos (SP), Brazil
Email:
tari@icmc.usp.br
DOI:
http://dx.doi.org/10.1090/S000299470403497X
PII:
S 00029947(04)03497X
Keywords:
Implicit differential equations,
differential geometry
Received by editor(s):
February 4, 2003
Received by editor(s) in revised form:
July 23, 2003
Published electronically:
April 16, 2004
Article copyright:
© Copyright 2004 American Mathematical Society
