A novel dual approach to nonlinear semigroups of Lipschitz operators

Authors:
Jigen Peng and Zongben Xu

Journal:
Trans. Amer. Math. Soc. **357** (2005), 409-424

MSC (2000):
Primary 47H20; Secondary 47D06

DOI:
https://doi.org/10.1090/S0002-9947-04-03635-9

Published electronically:
August 11, 2004

MathSciNet review:
2098102

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Lipschitzian semigroup refers to a one-parameter semigroup of Lipschitz operators that is strongly continuous in the parameter. It contains -semigroup, nonlinear semigroup of contractions and uniformly -Lipschitzian semigroup as special cases. In this paper, through developing a series of Lipschitz dual notions, we establish an analysis approach to Lipschitzian semigroup. It is mainly proved that a (nonlinear) Lipschitzian semigroup can be isometrically embedded into a certain -semigroup. As application results, two representation formulas of Lipschitzian semigroup are established, and many asymptotic properties of -semigroup are generalized to Lipschitzian semigroup.

**1.**R. F. Arens, J. J. Eells, On embedding uniform and topological spaces. Pacific J. Math., 6(1956): 397-403. MR**18:406e****2.**V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Groningen, 1976 MR**52:11666****3.**O. Bratteli, W. Robinson, Operator Algebras and Quantum Statistical Mechanics I: -and -Algebras, Algebras, Symmetry Groups, Decomposition of States. Springer-Verlag, New York, 1979. MR**81a:46070****4.**J. Czipszer and L. Geher, Extension of function satisfying a Lipschitz condition, Acta. Math. Acad. Sci. Hunger., 6(1955) 213-220. MR**17:136b****5.**E. B. Davies, One parameter Semigroups, London Math. Soc. Mono., Vol.15, 1980. MR**82i:47060****6.**J. R. Dorroh, J. W. Neuberger, A theory of strongly continuous semigroups in terms of Lie generators, J. Funct. Anal., 136 (1996): 114-126. MR**96m:47072****7.**D. J. Downing, W. O. Ray, Uniformly Lipschitz semigroup in Hilbert space, Cana. Math. Bull., 25(1982): 210-214. MR**84e:47066****8.**E. Hille and B. S. Phillips, Functional Analysis and Semigroups (2nd Edit.). Amer. Math. Soc., 1957 MR**19:664d****9.**R. Larsen, Functional Analysis. Marcel Dekker Inc., New York, 1973. MR**57:1055****10.**I. Miyadera, Nonlinear Semigroups (translated by Y. C. Choong in English). Amer. Math. Soc., Providence, 1992. MR**93j:47093****11.**A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York, 1983. MR**85g:47061****12.**J. G. Peng, Z. B. Xu, A novel dual notion of Banach space: Lipschitz dual space (in Chinese), Acta Math. Sinica, 42(2): 61-70, 1999 MR**2000d:46017****13.**J. G. Peng, K. S. Chung, Laplace transforms and generators of semigroups of operators. Proc. Amer. Math. Soc., 126(8): 2407-2416, 1998. MR**2000a:47088****14.**Q. Zheng, Strongly Continuous Semigroups of Linear Operators (in Chinese). The Press of Huazhong University of Science and Technology, Wuhan, China, 1994.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
47H20,
47D06

Retrieve articles in all journals with MSC (2000): 47H20, 47D06

Additional Information

**Jigen Peng**

Affiliation:
Research Center for Applied Mathematics, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China

Email:
jgpeng@mail.xjtu.edu.cn

**Zongben Xu**

Affiliation:
Research Center for Applied Mathematics, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China

Email:
zbxu@mail.xjtu.edu.cn

DOI:
https://doi.org/10.1090/S0002-9947-04-03635-9

Keywords:
Lipschitz operator,
Lipschitzian semigroup,
generator,
Lipschitz dual semigroup,
$C^{*}_{0}$-semigroup

Received by editor(s):
October 8, 2003

Published electronically:
August 11, 2004

Additional Notes:
This work was supported by the Natural Science Foundation of China under contract no. 10101019

Article copyright:
© Copyright 2004
American Mathematical Society