Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

On structurally stable diffeomorphisms with codimension one expanding attractors


Authors: V. Grines and E. Zhuzhoma
Journal: Trans. Amer. Math. Soc. 357 (2005), 617-667
MSC (2000): Primary 37D20; Secondary 37C70, 37C15
Published electronically: April 16, 2004
MathSciNet review: 2095625
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if a closed $n$-manifold $M^n$ $(n\ge 3)$ admits a structurally stable diffeomorphism $f$ with an orientable expanding attractor $\Omega$ of codimension one, then $M^n$ is homotopy equivalent to the $n$-torus $T^n$ and is homeomorphic to $T^n$ for $n\ne 4$. Moreover, there are no nontrivial basic sets of $f$ different from $\Omega$. This allows us to classify, up to conjugacy, structurally stable diffeomorphisms having codimension one orientable expanding attractors and contracting repellers on $T^n$, $n\ge 3$.


References [Enhancements On Off] (What's this?)

  • 1. D. Anosov. Geodesic flows on closed Riemannian manifolds of negative curvature. Trudy Mat. Inst. Steklov. 90 (1967); English transl., Proc. Steklov Inst. Math. 90 (1969). MR 36:7157
  • 2. D. Anosov. On a class of invariants sets of smooth dynamical systems. Proc. Fifth Internat. Conference of nonlinear oscillations. Vol. 2, Izdanie Inst. Mat. Akad Nauk Ukrain. SSR, Kiev, 1970, pp. 39-45 (in Russian). MR 47:8969
  • 3. S. Aranson, G. Belitsky, E. Zhuzhoma. Introduction to Qualitative Theory of Dynamical Systems on Closed Surfaces. Transl. of Math. Monographs, v. 153, 1996, Amer. Math. Soc. Providence, Rhode Island. MR 97c:58135
  • 4. S. Aranson, V. Grines. Topological classification of cascades on closed two-dimensional manifolds. Russian Math. Surveys, 45(1990), no 1, 1-35. MR 91d:58195
  • 5. S. Aranson, R. Plykin, A. Zhirov, E. Zhuzhoma. Exact upper bounds for the number of one-dimensional basic sets of surface A-diffeomorphisms. Journ. of Dyn. and Contr. Syst., 3(1997), no 1, 1-18. MR 98d:58109
  • 6. S. Aranson, E. Zhuzhoma. On the structure of quasiminimal sets of foliations on surfaces. Russian Acad. Sci. Sb. Mat. 82(1995), 397-424. MR 95i:57027
  • 7. Ch. Bonatti, R. Langevin. Difféomorphismes de Smale des surfaces. Astérisque, 250(1998). MR 99m:58123
  • 8. R. Bowen. Periodic points and measures for axiom A diffeomorphisms. Trans. Amer. Math. Soc., 154(1971), 377-397. MR 43:8084
  • 9. M. Brown. A proof of the generalized Schoenflies theorem. Bull. Amer. Math. Soc. 66(1960), no 2, 74-76. MR 22:8470b
  • 10. M. Brown, H. Gluck. Stable structure on manifolds. Ann. of Math. 79(1964), no 1, 1-58. MR 28:1608a
  • 11. F. Farrell, L. Jones. New attractors in hyperbolic dynamics. J. Diff. Geom. 15(1980), 107-133. MR 82h:58025
  • 12. J. Franks. Anosov diffeomorphisms. Global Analisys. Proc. Symp. in Pure Math., AMS 14(1970), 61-94. MR 42:6871
  • 13. J. Franks, C. Robinson. A quasi-Anosov diffeomorphism that is not Anosov. Trans. Amer. Math. Soc. 223(1976), 267-278. MR 54:11399
  • 14. V. Grines. On topological equivalence of one-dimensional basic sets of diffeomorphisms on two-dimensional manifolds. Uspekhi Mat. Nauk 29(1974), no. 6, 163-164 (in Russian). MR 55:13498
  • 15. V. Grines. On topological conjugacy of diffeomorphisms of a two-dimensional manifold onto one-dimensional orientable basic sets I. Trans. Moscow Math. Soc. 32(1975), 31-56. MR 54:6203
  • 16. V. Grines. On topological conjugacy of diffeomorphisms of a two-dimensional manifold onto one-dimensional orientable basic sets II. Trans. Moscow Math. Soc. 34(1977), 237-245. MR 57:14057
  • 17. V. Grines Structural stability and asymptotic behavior of invariant manifolds of $A$-diffeomorphisms of surfaces. Journal of Dyn. and Control Syst. 3(1997), no 1, 91-110. MR 98b:58095
  • 18. V. Grines On the topological classification of structurally stable diffeomorphisms of surfaces with one-dimensional attractors and repellers. Sborn. Math. 188(1997), no 4, 537-569. MR 98g:58092
  • 19. V. Grines, E. Zhuzhoma. The topological classification of orientable attractors on an $n$-dimensional torus. Russian Math. Surveys 34 (1978), no. 4, 163-164. MR 80k:58071
  • 20. V. Grines, E. Zhuzhoma. Necessary and sufficient conditions for the topological equivalence of orientable attractors on $n$-dimensional torus. Diff. and Integr. Equat. Sb. of Gorky University, 1981, 89-93 (in Russian). MR 84k:58136
  • 21. V. Grines, E. Zhuzhoma. Structuraly stable diffeomorphisms with codimension one basic sets. Preprint. Universite de Bourgogne, Laboratoire de Topologie, Dijon Cedex, 2000, no 223.
  • 22. J. Guckenheimer. Endomorphisms of Riemann sphere. Global Analisys. Proc. Symp. in Pure Math., AMS 14(1970), 95-123. MR 43:500
  • 23. A. Haefliger. Variétés feuilletées. Ann. Scuola Norm. Sup. Pisa 16(1962), 367-397. MR 32:6487
  • 24. J. Hempel. 3-manifolds. Princeton, Annals Math. Studies, 86(1976). MR 54:3702
  • 25. K. Hiraide. A simple proof of the Franks-Newhouse theorem on codimension one Anosov diffeomorphisms. Ergod. Th. and Dynam. Sys., 21(2001), 801-806. MR 2002e:37042
  • 26. M. Hirsch. Differential Topology. Sringer-Verlag, 1976. MR 56:6669
  • 27. M. Hirsch, C. Pugh. Stable manifolds and hyperbolic sets. Global Analysis, Proc. Symp. Pure Math., Amer. Math. Soc., 14(1970), 133-163. MR 42:6872
  • 28. M. Hirsch, J. Palis, C. Pugh, M. Shub. Neighborhoods of hyperbolic sets. Invent. Math. 9(1970), 121-134. MR 41:7232
  • 29. W. C. Hsiang, C. T. C. Wall. On homotopy tori, II. Bull.London Math. Soc. 1(1969), 341-342. MR 41:2691
  • 30. L. Jones. Locally strange hyperbolic sets. Trans. Amer. Math. Soc. 275(1983), no 1, 153-162. MR 84b:58085
  • 31. A. Katok, B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Math. and its Appl., Cambridge Univ. Press, 1994. MR 96c:58055
  • 32. H. Kollmer. On hyperbolic attractors of codimension one. Lect. Notes Math. 597(1977), 330-334. MR 57:7687
  • 33. H. Lawson. Foliations. Bull. Amer. Math. Soc. 80(1974), 369-418. MR 49:8031
  • 34. W. Magnus, A. Karrass, D. Solitar. Combinatorial Group Theory: Presentations of groups in terms of generators and relations. Interscience Publishers, 1966.
  • 35. R. Mañé. A proof of $C^1$ stability conjecture. Publ. Math. IHES 66(1988), 161-210. MR 89e:58090
  • 36. B. Mazur. On embedding of spheres. Bull. Amer. Math. Soc. 65(1959), 59-65. MR 22:8469
  • 37. S. E. Newhouse. On codimension one Anosov diffeomorphisms. Amer. J. Math. 92(1970), no 3, 761-770. MR 43:2741
  • 38. Z. Nitecki. Differentiable dynamics. MIT Press, Cambridge, 1971. MR 58:31210
  • 39. S. P. Novikov. Topology of foliations. Trans. Moscow Math. Soc. 14 (1965), 268-304 (1967).
  • 40. J. Palis. On Morse-Smale dynamical systems. Topology 8(1969), no 4, 385-404. MR 39:7620
  • 41. J. Palis, W. de Melo. Geometric Theory of Dynamical Systems. An Introduction. Springer-Verlag, 1982. MR 84a:58004
  • 42. J. Plante. The homology class of an expanded invariant manifold. Lect. Notes Math. 468(1975), 251-256. MR 58:31269
  • 43. R. V. Plykin. On the topology of basic sets of Smale diffeomorphisms. Math. USSR--Sbornik 13 (1971), 297-307. MR 44:3348
  • 44. R. V. Plykin. Sources and sinks of A-diffeomorphisms of surfaces. Math. USSR--Sbornik 23(1974), 223-253.
  • 45. R. V. Plykin. The geometry of hyperbolic attractors of smooth cascades. Russian Math. Surveys 39 (1984), no. 6, 85-131. MR 86f:58106
  • 46. G. Reeb. Sur certaines propriétés topologiques des variétés feuilletées. Actual. Sci. Ind., no 1183, Hermann, Paris, 1952. MR 14:1113a
  • 47. C. Robinson. Structural stability of $C^1$ diffeomorphisms. J. Diff. Equat. 22(1976), no 1, 28-73. MR 57:14051
  • 48. C. Robinson. Dynamical Systems: stability, symbolic dynamics, and chaos. Studies in Adv. Math., 2nd ed., CRC Press, Boca Raton, FL, 1999. MR 2001k:37003
  • 49. C. Robinson, R. Williams. Finite stability is not generic. Dynamical Systems: Proc. Symp. (Brazil, 1971), Academic Press, New York, London, 1973, 451-462. MR 48:9763
  • 50. C. Robinson, R. Williams. Classification of expanding attractors: an example. Topology 15(1976), 321-323. MR 54:3762
  • 51. H. Rosenberg. Foliations by planes. Topology 7(1968), 131-138. MR 37:3595
  • 52. T. B. Rushing. Topological Embeddings. Acad. Press, NY and London, 1973. MR 50:1247
  • 53. S. Smale. Differentiable dynamical systems. Bull. AMS, 73(1967), 747-817. MR 37:3598
  • 54. N. Steenrod. The topology of fibre bundles. Princeton, New Jersey, 1951. MR 12:522b
  • 55. J. Stallings. On fibering certain 3-manifolds. Topology of 3-manifolds, Prentice-Hall, 1962. MR 28:1600
  • 56. D. Sullivan, R. Williams. On the homology of attractors. Topology 15(1976), 259-262. MR 54:1304
  • 57. I. Tamura. Topology of Foliations. Iwanami Shoten, Tokyo, 1976; Russian transl., ``Mir'', Moscow, 1979; English transl., Amer. Math. Soc., 1992. MR 84a:57028a, MR 84a:57028b, MR 93c:57021
  • 58. R. Williams. One-dimensional nonwandering sets. Topology, 6(1967), 473-487. MR 36:897
  • 59. R. Williams. The `DA' maps of Smale and structural stability, Global Anal., Proc. Symp. Pure. Math., AMS 14(1970), 329-334. MR 41:9296
  • 60. R. Williams. Expanding attractors. Publ. Math. I.H.E.S. 43(1974), 169-203. MR 50:1289
  • 61. A. Yu. Zhirov. Enumeration of hyperbolic attractors on orientanle surfaces and applications to pseudo-Anosov homeomorphisms. Russ. Acad. Sci. Dokl. Math., 47(1993). MR 94i:58152
  • 62. A. Yu. Zhirov. Complete combinatorial invariants for conjugacy of hyperbolic attractors of diffeomorphisms of surfaces. Journ. Dyn. and Contr. Syst., 6(2000), no 3, 397-430. MR 2001g:37051
  • 63. E. Zhuzhoma. Orientable basic sets of codimension 1. Soviet Math. (Iz. VUZ) 26(1982), no 5, 17-25. MR 83i:58077

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 37D20, 37C70, 37C15

Retrieve articles in all journals with MSC (2000): 37D20, 37C70, 37C15


Additional Information

V. Grines
Affiliation: Department of Mathematics, Agriculture Academy of Nizhny Novgorod, 97 Gagarin Ave, Nizhny Novgorod, 603107 Russia

E. Zhuzhoma
Affiliation: Department of Applied Mathematics, Nizhny Novgorod State Technical University, 24 Minina Str., Nizhny Novgorod, 603600 Russia
Email: zhuzhoma@mail.ru

DOI: http://dx.doi.org/10.1090/S0002-9947-04-03460-9
PII: S 0002-9947(04)03460-9
Received by editor(s): March 15, 2001
Received by editor(s) in revised form: April 10, 2003, and July 10, 2003
Published electronically: April 16, 2004
Additional Notes: This research was partially supported by the RFFI grant 02-01-00098
Article copyright: © Copyright 2004 American Mathematical Society