Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The relationship between homological properties and representation theoretic realization of artin algebras

Author: Osamu Iyama
Journal: Trans. Amer. Math. Soc. 357 (2005), 709-734
MSC (2000): Primary 16E65; Secondary 16G70
Published electronically: July 16, 2004
MathSciNet review: 2095628
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We will study the relationship of quite different objects in the theory of artin algebras, namely Auslander-regular rings of global dimension two, torsion theories, $\tau$-categories and almost abelian categories. We will apply our results to characterization problems of Auslander-Reiten quivers.

References [Enhancements On Off] (What's this?)

  • [A] M. Auslander: Representation theory of Artin algebras. I, II. Comm. Algebra 1 (1974), 177-268; ibid. 1 (1974), 269-310. MR 50:2240
  • [AB] M. Auslander, M. Bridger: Stable module theory. Memoirs of the A merican Mathematical Society, No. 94 American Mathematical Society, Providence, R.I. 1969 146 pp. MR 42:4580
  • [AR1] M. Auslander, I. Reiten: Representation theory of Artin algebr as. III. Almost split sequences. Comm. Algebra 3 (1975), 239-294. MR 52:504
  • [AR2] M. Auslander, I. Reiten: $k$-Gorenstein algebras and syzygy modules. J. Pure Appl. Algebra 92 (1994), no. 1, 1-27. MR 95d:16008
  • [AR3] M. Auslander, I. Reiten: Syzygy modules for Noetherian rings. J. Algebra 183 (1996), no. 1, 167-185. MR 97g:16012
  • [ARS] M. Auslander, I. Reiten, S. O. Smalø: Representation theory of Artin algebras. Cambridge Studies in Advanced Mathematics, 36. Cambridge University Press, Cambridge, 1995. MR 96c:16015
  • [AS] M. Auslander, S. O. Smalø: Almost split sequences in subcategories. J. Algebra 69 (1981), no. 2, 426-454. MR 82j:16048a
  • [As] I. Assem: Tilting theory--an introduction. Topics in algebra, Part 1 (Warsaw, 1988), 127-180, Banach Center Publ., 26, Part 1, PWN, Warsaw, 1990. MR 93g:16011
  • [B] H. Bass: On the ubiquity of Gorenstein rings. Math. Z. 82 1963 8-28. MR 27:3669
  • [Bj] J-E. Bjork: The Auslander condition on Noetherian rings. Seminaire d'Algebre Paul Dubreil et Marie-Paul Malliavin, 39eme Annee (Paris, 1987/1988), 137-173, Lecture Notes in Math., 1404, Springer, Berlin, 1989. MR 90m:16002
  • [BG] K. Bongartz, P. Gabriel: Covering spaces in representation-theory. Invent. Math. 65 (1981/82), no. 3, 331-378. MR 84i:16030
  • [Br] S. Brenner: A combinatorial characterization of finite Auslander-Reiten quivers, (Ottawa, Ont., 1984), 13-49, Lecture Notes in Math., 1177, Springer, Berlin, New York, 1986. MR 87m:16045
  • [C] J. Clark: Auslander-Gorenstein rings for beginners. International Symposium on Ring Theory (Kyongju, 1999), 95-115, Trends Math., Birkhauser Boston, Boston, MA, 2001. MR 2002f:16010
  • [CR] C. W. Curtis, I. Reiner: Methods of representation theory. Vol. I. With applications to finite groups and orders. Reprint of the 1981 original. Wiley Classics Library. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1990. MR 90k:20001
  • [DK] Y. A. Drozd, V. V. Kiricenko: The quasi-Bass orders. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 328-370. MR 46:3546
  • [DKR] Y. A. Drozd, V. V. Kiricenko, A. V. Ro{\u{\i}}\kern.15emter: Hereditary and Bass orders. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 31 1967 1415-1436. MR 36:2608
  • [FGR] R. M. Fossum, P. Griffith, I. Reiten: Trivial extensions of abelian categories. Homological algebra of trivial extensions of abelian categories with applications to ring theory. Lecture Notes in Mathematics, Vol. 456. Springer-Verlag, Berlin, New York, 1975. MR 52:10810
  • [GM] E. L. Green, R. Martinez Villa: Koszul and Yoneda algebras. Representation theory of algebras (Cocoyoc, 1994), 247-297, CMS Conf. Proc., 18, Amer. Math. Soc., Providence, RI, 1996. MR 97c:16012
  • [Ha] D. Happel: Triangulated categories in the representation theory of finite-dimensional algebras. London Mathematical Society Lecture Note Series, 119. Cambridge University Press, Cambridge, 1988. MR 89e:16035
  • [H1] M. Hoshino: Tilting modules and torsion theories. Bull. London Math. Soc. 14 (1982), no. 4, 334-336. MR 83h:16042
  • [H2] M. Hoshino: On dominant dimension of Noetherian rings. Osaka J. Math. 26 (1989), no. 2, 275-280. MR 90k:16033
  • [HPR] D. Happel, U. Preiser, C. M. Ringel: Vinberg's characterization of Dynkin diagrams using subadditive functions with application to $D\mathrm{Tr}$-periodic modules. Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979), pp. 280-294, Lecture Notes in Math., 832, Springer, Berlin, 1980. MR 82g:16027
  • [HN] H. Hijikata, K. Nishida: Bass orders in nonsemisimple algebras. J. Math. Kyoto Univ. 34 (1994), no. 4, 797-837. MR 96a:16012
  • [I1] O. Iyama: A generalization of rejection lemma of Drozd-Kirichenko. J. Math. Soc. Japan 50 (1998), no. 3, 697-718. MR 99h:16029
  • [I2] O. Iyama: Some categories of lattices associated to a central idempotent. J. Math. Kyoto Univ. 38 (1998), no. 3, 487-501. MR 2000d:16011
  • [I3] O. Iyama: $\tau$-categories I: Ladders, to appear in Algebras and Representation Theory.
  • [I4] O. Iyama: $\tau$-categories II: Nakayama pairs and rejective subcategories, to appear in Algebras and Representation Theory.
  • [I5] O. Iyama: $\tau$-categories III: Auslander orders and Auslander-Reiten quivers, to appear in Algebras and Representation Theory.
  • [I6] O. Iyama: Representation theory of orders. ``Algebra - Representation Theory" (Edited by K. W. Roggenkamp, M. Stefanescu), Nato-Science-Series, Kluwer Academic Publishers, 63-96 (2001) MR 2002g:16023
  • [I7] O. Iyama: A proof of Solomon's second conjecture on local zeta functions of orders, J. Algebra 259 (2003), no. 1, 119-126. MR 2003m:11199
  • [I8] O. Iyama: Finiteness of Representation dimension, Proc. Amer. Math. Soc. 131 (2003), no. 4, 1011-1014. MR 2003k:16024
  • [I9] O. Iyama: Symmetry and Duality on $n$-Gorenstein rings, J. Algebra 269 (2003), no. 2, 528-535.
  • [IT1] K. Igusa, G. Todorov: Radical layers of representable functors. J. Algebra 89 (1984), no. 1, 105-147. MR 86f:16029a
  • [IT2] K. Igusa, G. Todorov: A characterization of finite Auslander-Reiten quivers. J. Algebra 89 (1984), no. 1, 148-177. MR 86f:16029b
  • [IT3] K. Igusa, G. Todorov: A numerical characterization of finite Auslander-Reiten quivers. Representation theory, I (Ottawa, Ont., 1984), 181-198, Lecture Notes in Math., 1177, Springer, Berlin, 1986. MR 87i:16058
  • [Ro] K. W. Roggenkamp: Lattices over orders. II. Lecture Notes in Mathematics, Vol. 142 Springer-Verlag, Berlin, New York 1970. MR 44:247b
  • [R1] W. Rump: Almost abelian categories. Cahiers Topologie Geom. Differentielle Categ. 42 (2001), no. 3, 163-225. MR 2002m:18008
  • [R2] W. Rump: $*$-modules, tilting, and almost abelian categories. Comm. Algebra 29 (2001), no. 8, 3293-3325. MR 2002f:18020
  • [R3] W. Rump: Ladder functors with an application to representation-finite Artinian rings. An. Stiint. Univ. Ovidius Constanta Ser. Mat. 9 (2001), no. 1, 107-123. MR 2004a:16024
  • [R4] W. Rump: Lattice-finite rings, to appear in Algebras and Representation Theory.
  • [R5] W. Rump: The category of lattices over a lattice-finite ring, to appear in Algebras and Representation Theory.
  • [RV] I. Reiten, M. Van den Bergh: Two-dimensional tame and maximal orders of finite representation type. Mem. Amer. Math. Soc. 80 (1989). MR 90b:16009
  • [RVo] C. M. Ringel, D. Vossieck, Hammocks, Proc. London Math. Soc. (3) 54 (1987), 216-246. MR 88f:16025
  • [S] D. Simson: Linear representations of partially ordered sets and vector space categories. Algebra, Logic and Applications, 4. Gordon and Breach Science Publishers, Montreux, 1992. MR 95g:16013
  • [T] H. Tachikawa: Quasi-Frobenius rings and generalizations. Lecture Notes in Mathematics, Vol. 351. Springer-Verlag, Berlin, New York, 1973. MR 50:2233

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 16E65, 16G70

Retrieve articles in all journals with MSC (2000): 16E65, 16G70

Additional Information

Osamu Iyama
Affiliation: Department of Mathematics, Himeji Institute of Technology, Himeji, 671-2201, Japan

Received by editor(s): July 9, 2002
Received by editor(s) in revised form: July 31, 2003
Published electronically: July 16, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society