Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Harnack inequalities for non-local operators of variable order


Authors: Richard F. Bass and Moritz Kassmann
Journal: Trans. Amer. Math. Soc. 357 (2005), 837-850
MSC (2000): Primary 45K05; Secondary 60H10
DOI: https://doi.org/10.1090/S0002-9947-04-03549-4
Published electronically: July 22, 2004
MathSciNet review: 2095633
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider harmonic functions with respect to the operator

\begin{displaymath}\mathcal{L} u(x)=\int [u(x+h)-u(x)-1_{(\vert h\vert\leq 1)} h\cdot \nabla u(x)] n(x,h) \, dh. \end{displaymath}

Under suitable conditions on $n(x,h)$ we establish a Harnack inequality for functions that are nonnegative and harmonic in a domain. The operator $\mathcal{L}$ is allowed to be anisotropic and of variable order.


References [Enhancements On Off] (What's this?)

  • [Bas88] R. F. Bass.
    Uniqueness in law for pure jump Markov processes.
    Probab. Theory Related Fields, 79(2):271-287, 1988. MR 89h:60118
  • [BBG00] M.T. Barlow, R.F. Bass, and C. Gui.
    The Liouville property and a conjecture of De Giorgi.
    Comm. Pure Appl. Math., 53(8):1007-1038, 2000. MR 2001m:35095
  • [Ber96] J. Bertoin.
    Lévy Processes.
    Cambridge University Press, Cambridge, 1996. MR 98e:60117
  • [BG68] R. M. Blumenthal and R. K. Getoor.
    Markov Processes and Potential Theory.
    Pure and Applied Mathematics, Vol. 29. Academic Press, New York, 1968. MR 41:9348
  • [BL02a] R.F. Bass and D.A. Levin.
    Harnack inequalities for jump processes.
    Potential Anal., 17(4):375-388, 2002. MR 2003e:60194
  • [BL02b] R.F. Bass and D.A. Levin.
    Transition probabilities for symmetric jump processes.
    Trans. Amer. Math. Soc., 354(7):2933-2953, 2002. MR 2002m:60132
  • [BSS02a] Krzysztof Bogdan, Andrzej Stós, and Paweł Sztonyk, Harnack inequality for stable processes on 𝑑-sets, Studia Math. 158 (2003), no. 2, 163–198. MR 2013738, https://doi.org/10.4064/sm158-2-5
  • [BSS02b] K. Bogdan, A. Stós, and P. Sztonyk. Potential theory for Lévy stable processes. Bull. Polish Acad. Sci. Math. 50(3):361-372, 2002. MR 2003m:60125
  • [CK03] Zhen-Qing Chen and Takashi Kumagai, Heat kernel estimates for stable-like processes on 𝑑-sets, Stochastic Process. Appl. 108 (2003), no. 1, 27–62. MR 2008600, https://doi.org/10.1016/S0304-4149(03)00105-4
  • [FS86] E.B. Fabes and D.W Stroock.
    A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash.
    Arch. Mech. Rat. Anal., 96:327-338, 1986. MR 88b:35037
  • [Hoh95] W. Hoh.
    Pseudodifferential operators with negative definite symbols and the martingale problem.
    Stochastics Stochastics Rep., 55(3-4):225-252, 1995. MR 97c:35225
  • [Kas03] M. Kassmann.
    On regularity for Beurling-Deny type Dirichlet forms.
    Potential Analysis, 19(1):69-87, 2003. MR 2004a:31005
  • [Kom84] T. Komatsu.
    On the martingale problem for generators of stable processes with perturbations.
    Osaka J. Math., 21(1):113-132, 1984. MR 86e:60060
  • [KS79] N. V. Krylov and M. V. Safonov.
    An estimate for the probability of a diffusion process hitting a set of positive measure.
    Dokl. Akad. Nauk SSSR, 245(1):18-20, 1979; English transl., Soviet Math. Dokl. 20(1):253-255, 1979. MR 80b:60101
  • [KS80] N. V. Krylov and M. V. Safonov.
    A property of the solutions of parabolic equations with measurable coefficients.
    Izv. Akad. Nauk SSSR Ser. Mat., 44(1):161-175, 239, 1980; English transl., Math. USSR-Izv. 16(1):151-164, 1981. MR 83c:35059
  • [Mos61] J. Moser.
    On Harnack's theorem for elliptic differential equations.
    Comm. Pure Appl. Math., 14:577-591, 1961. MR 28:2356
  • [Sko65] A. V. Skorokhod.
    Studies in the Theory of Random Processes.
    Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 32:3082b
  • [SV04] R. Song and Z. Vondracek.
    Harnack inequality for some classes of Markov processes. Math. Z. 246(1-2):177-202, 2004.
  • [SV79] D. W. Stroock and S. R. S. Varadhan.
    Multidimensional Diffusion Processes, Volume 233 of Grundlehren der Mathematischen Wissenschaften.
    Springer-Verlag, Berlin, 1979. MR 81f:60108

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 45K05, 60H10

Retrieve articles in all journals with MSC (2000): 45K05, 60H10


Additional Information

Richard F. Bass
Affiliation: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269-3009
Email: bass@math.uconn.edu

Moritz Kassmann
Affiliation: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269-3009 – and Institut für Angewandte Mathematik, Universität Bonn, Beringstrasse 6, D-53115 Bonn, Germany
Email: kassmann@math.uconn.edu

DOI: https://doi.org/10.1090/S0002-9947-04-03549-4
Keywords: Harnack inequality, non-local operator, stable processes, L\'evy processes, jump processes, integral operators
Received by editor(s): May 27, 2003
Received by editor(s) in revised form: October 27, 2003
Published electronically: July 22, 2004
Additional Notes: The first author’s research was partially supported by NSF grant DMS-9988496
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society