On the Cohen-Macaulay modules of graded subrings

Author:
Douglas Hanes

Journal:
Trans. Amer. Math. Soc. **357** (2005), 735-756

MSC (2000):
Primary 13C14

Published electronically:
April 27, 2004

MathSciNet review:
2095629

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give several characterizations for the linearity property for a maximal Cohen-Macaulay module over a local or graded ring, as well as proofs of existence in some new cases. In particular, we prove that the existence of such modules is preserved when taking Segre products, as well as when passing to Veronese subrings in low dimensions. The former result even yields new results on the existence of finitely generated maximal Cohen-Macaulay modules over non-Cohen-Macaulay rings.

**1.**J. Herzog, B. Ulrich, and J. Backelin,*Linear maximal Cohen-Macaulay modules over strict complete intersections*, J. Pure Appl. Algebra**71**(1991), no. 2-3, 187–202. MR**1117634**, 10.1016/0022-4049(91)90147-T**2.**Joseph P. Brennan, Jürgen Herzog, and Bernd Ulrich,*Maximally generated Cohen-Macaulay modules*, Math. Scand.**61**(1987), no. 2, 181–203. MR**947472****3.**Winfried Bruns and Jürgen Herzog,*Cohen-Macaulay rings*, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR**1251956****4.**M. Hochster and John A. Eagon,*Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci*, Amer. J. Math.**93**(1971), 1020–1058. MR**0302643****5.**J. A. Eagon and D. G. Northcott,*Generically acyclic complexes and generically perfect ideals*, Proc. Roy. Soc. Ser. A**299**(1967), 147–172. MR**0214586****6.**D. Eisenbud and F.-O. Schreyer (App. by J. Weyman),*Resultants and Chow forms via exterior syzygies*, J. Amer. Math. Soc.**16**(2003), 537-579.**7.**Shiro Goto and Keiichi Watanabe,*On graded rings. I*, J. Math. Soc. Japan**30**(1978), no. 2, 179–213. MR**494707**, 10.2969/jmsj/03020179**8.**D. Hanes,*Special conditions on maximal Cohen-Macaulay modules, and applications to the theory of multiplicities*, Thesis, University of Michigan, 1999.**9.**Douglas Hanes,*Length approximations for independently generated ideals*, J. Algebra**237**(2001), no. 2, 708–718. MR**1816712**, 10.1006/jabr.2000.8598**10.**Melvin Hochster,*Big Cohen-Macaulay modules and algebras and embeddability in rings of Witt vectors*, Conference on Commutative Algebra–1975 (Queen’s Univ., Kingston, Ont., 1975), Queen’s Univ., Kingston, Ont., 1975, pp. 106–195. Queen’s Papers on Pure and Applied Math., No. 42. MR**0396544****11.**Melvin Hochster,*Topics in the homological theory of modules over commutative rings*, Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, Providence, R.I., 1975. Expository lectures from the CBMS Regional Conference held at the University of Nebraska, Lincoln, Neb., June 24–28, 1974; Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 24. MR**0371879****12.**Craig Huneke and Matthew Miller,*A note on the multiplicity of Cohen-Macaulay algebras with pure resolutions*, Canad. J. Math.**37**(1985), no. 6, 1149–1162. MR**828839**, 10.4153/CJM-1985-062-4**13.**Christer Lech,*Note on multiplicities of ideals*, Ark. Mat.**4**(1960), 63–86 (1960). MR**0140536****14.**Frank Ma,*Splitting in integral extensions, Cohen-Macaulay modules and algebras*, J. Algebra**116**(1988), no. 1, 176–195. MR**944154**, 10.1016/0021-8693(88)90200-1**15.**D. G. Northcott and D. Rees,*Reductions of ideals in local rings*, Proc. Cambridge Philos. Soc.**50**(1954), 145–158. MR**0059889****16.**C. Peskine and L. Szpiro,*Notes sur un air de H. Bass*, Unpublished preprint, Brandeis University.**17.**Bernd Ulrich,*Gorenstein rings and modules with high numbers of generators*, Math. Z.**188**(1984), no. 1, 23–32. MR**767359**, 10.1007/BF01163869

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
13C14

Retrieve articles in all journals with MSC (2000): 13C14

Additional Information

**Douglas Hanes**

Affiliation:
School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455

Address at time of publication:
Neuro-otology Research, Legacy Research Center, 1225 NE 2nd Avenue, Portland, Oregon 97232

Email:
hanes@math.umn.edu, douglash@neurotology.org

DOI:
https://doi.org/10.1090/S0002-9947-04-03562-7

Received by editor(s):
November 11, 2001

Received by editor(s) in revised form:
August 14, 2003

Published electronically:
April 27, 2004

Article copyright:
© Copyright 2004
American Mathematical Society