Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Knot theory for self-indexed graphs

Authors: Matías Graña and Vladimir Turaev
Journal: Trans. Amer. Math. Soc. 357 (2005), 535-553
MSC (2000): Primary 57M25, 57M15; Secondary 05C99
Published electronically: August 19, 2004
MathSciNet review: 2095622
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce and study so-called self-indexed graphs. These are (oriented) finite graphs endowed with a map from the set of edges to the set of vertices. Such graphs naturally arise from classical knot and link diagrams. In fact, the graphs resulting from link diagrams have an additional structure, an integral flow. We call a self-indexed graph with integral flow a comte. The analogy with links allows us to define transformations of comtes generalizing the Reidemeister moves on link diagrams. We show that many invariants of links can be generalized to comtes, most notably the linking number, the Alexander polynomials, the link group, etc. We also discuss finite type invariants and quandle cocycle invariants of comtes.

References [Enhancements On Off] (What's this?)

  • [AG] N. Andruskiewitsch and M. Graña From racks to pointed Hopf algebras, Adv. Math. 178 (2003) no. 2, 177-243.
  • [BZ] G. Burde and H. Zieschang, Knots, de Gruyter Studies in Mathematics, 5. Walter de Gruyter & Co., Berlin, 1985. MR 87b:57004
  • [CJKLS] J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford and M. Saito, Quandle cohomology and state-sum invariants of knotted curves and surfaces, Trans. Amer. Math. Soc., 355 (2003) no. 10, 3947-3989 (electronic).
  • [CR] A. Christensen and S. Rosebrock, On the impossibility of a generalization of the HOMFLY polynomial to LOGs, Ann. Fac. Sci. Toulouse Math. (6) 5 (1996), no. 3, 407-419. MR 97m:57003
  • [EG] P. Etingof and M. Graña On rack cohomology, J. Pure Appl. Algebra 177 (2003), no. 1, 49-59. MR 2004e:55006
  • [FRS] R. Fenn, C. Rourke and B. Sanderson, An introduction to species and the rack space, Topics in knot theory (Erzurum, 1992), 33-55, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 399, Kluwer Acad. Publ., Dordrecht, 1993. MR 95g:57022
  • [GH] N.D. Gilbert and J. Howie, LOG groups and cyclically presented groups, J. Algebra 174 (1995) no. 1, 118-131. MR 96g:20042
  • [GPV] M. Goussarov, M. Polyak and O. Viro, Finite-type invariants of classical and virtual knots, Topology 39 (2000) no. 5, 1045-1068. MR 2001i:57017
  • [J] D. Joyce, A Classifying Invariant of Knots, The Knot Quandle, J. Pure Appl. Alg. 23 (1982) no. 1, 37-65. MR 83m:57007
  • [K] L. Kauffman, Virtual knots theory, European J. Combin. 20 (1999) no. 7, 663-690 MR 2000i:57011
  • [Ma] S. Matveev, Distributive groupoids in knot theory, (Russian) Mat. Sb. (N.S.) 119(161) (1982) no. 1, 78-88 160; English translation: Math. USSR-Sb. 47 (1984), no. 1, 73-83. MR 84e:57008
  • [R] D. Rolfsen, Knots and links, Corrected reprint of the 1976 original. Mathematics Lecture Series, 7, Publish or Perish, Inc., Houston, TX, 1990. MR 95c:57018

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 57M25, 57M15, 05C99

Retrieve articles in all journals with MSC (2000): 57M25, 57M15, 05C99

Additional Information

Matías Graña
Affiliation: Departamento de Matemática - FCEyN - Universidad de Buenos Aires, Ciudad Universitaria, Pab. I, 1428 Buenos Aires, Argentina

Vladimir Turaev
Affiliation: IRMA, CNRS - Université Louis Pasteur, 7 rue René Descartes, 67084 Strasbourg Cedex, France

Received by editor(s): July 4, 2003
Published electronically: August 19, 2004
Additional Notes: The work of the first author was supported by CONICET (Argentina)
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society