Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the complexity of the integral closure


Authors: Bernd Ulrich and Wolmer V. Vasconcelos
Journal: Trans. Amer. Math. Soc. 357 (2005), 425-442
MSC (2000): Primary 13B22; Secondary 13C15, 13H15, 13P10
DOI: https://doi.org/10.1090/S0002-9947-04-03627-X
Published electronically: September 23, 2004
MathSciNet review: 2095616
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The computation of the integral closure of an affine ring has been the focus of several modern algorithms. We will treat here one related problem: the number of generators the integral closure of an affine ring may require. This number, and the degrees of the generators in the graded case, are major measures of cost of the computation. We prove several polynomial type bounds for various kinds of algebras, and establish in characteristic zero an exponential type bound for homogeneous algebras with a small singular locus.


References [Enhancements On Off] (What's this?)

  • 1. M. Artin and M. Nagata, Residual intersections in Cohen-Macaulay rings, J. Math. Kyoto Univ. 12 (1972), 307-323. MR 46:166
  • 2. M. Auslander and D. Buchsbaum, On ramification theory in Noetherian rings, Amer. J. Math. 81 (1959), 749-765. MR 21:5659
  • 3. D. Bayer and D. Mumford, What can be computed in algebraic geometry? Computational Algebraic Geometry and Commutative Algebra, Proceedings, Cortona 1991 (D. Eisenbud and L. Robbiano, Eds.), Cambridge University Press, Cambridge, 1993, 1-48. MR 95d:13032
  • 4. T. Becker, H. Kredel and V. Weispfenning, Gröbner Bases, Springer, Heidelberg, 1993. MR 95e:13018
  • 5. A. Bertram, L. Ein and R. Lazarsfeld, Vanishing theorems, a theorem of Severi, and the equations defining projective varieties, J. Amer. Math. Soc. 4 (1991), 587-602. MR 92g:14014
  • 6. W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1993. MR 95h:13020
  • 7. L. van den Dries and K. Schmidt, Bounds in the theory of polynomial rings over fields. A nonstandard approach, Invent. Math. 76 (1984), 77-91. MR 85i:12016
  • 8. D. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), 89-133. MR 85f:13023
  • 9. H. Flenner, Die Sätze von Bertini für lokale Ringe, Math. Ann. 229 (1977), 97-111. MR 57:311
  • 10. O. Forster, Über die Anzahl der Erzeugenden eines Ideals in einem Noetherschen Ring, Math. Z. 84 (1964), 80-87. MR 29:1231
  • 11. M. Giusti, Some effectivity problems in polynomial ideal theory, EUROSAM 1984, Lecture Notes in Computer Science 174, Springer, Heidelberg, 1984, 159-171. MR 86d:12001
  • 12. L. Gruson, R. Lazarsfeld and C. Peskine, On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math. 72 (1983), 491-506. MR 85g:14033
  • 13. M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. 96 (1972), 318-337. MR 46:3511
  • 14. M. Hochster, Properties of Noetherian rings stable under general grade reduction, Arch. Math. 24 (1973), 393-396. MR 48:8485
  • 15. T. de Jong, An algorithm for computing the integral closure, J. Symbolic Computation 26 (1998), 273-277. MR 99d:13007
  • 16. S. Kwak, Castelnuovo regularity for smooth subvarieties of dimensions $3$ and $4$, J. Algebraic Geom. 7 (1998), 195-206. MR 2000d:14043
  • 17. S. Kwak, Castelnuovo-Mumford regularity bound for smooth threefolds in ${\mathbb P}^5$ and extremal examples, J. reine angew. Math. 509 (1999), 21-34. MR 2000e:14064
  • 18. S. Kwak, Generic projections, the equations defining projective varieties and Castelnuovo regularity, Math. Z. 234 (2000), 413-434. MR 2001e:14042
  • 19. R. Lazarsfeld, A sharp Castelnuovo bound for smooth surfaces, Duke Math. J. 55 (1987), 423-429. MR 89d:14007
  • 20. J. Lipman and A. Sathaye, Jacobian ideals and a theorem of Briançon-Skoda, Michigan Math. J. 28 (1981), 199-222. MR 83m:13001
  • 21. E. Noether, Idealdifferentiation und Differente, J. reine angew. Math. 188 (1950), 1-21. MR 12:388b
  • 22. A. Seidenberg, Construction of the integral closure of a finite integral domain II, Proc. Amer. Math. Soc. 52 (1975), 368-372. MR 54:12741
  • 23. A. Simis, B. Ulrich and W. V. Vasconcelos, Tangent star cones, J. reine angew. Math. 483 (1997), 23-59. MR 97m:14001
  • 24. A. Simis, B. Ulrich and W. V. Vasconcelos, Codimension, multiplicity and integral extensions, Math. Proc. Camb. Phil. Soc. 130 (2001), 237-257. MR 2002c:13017
  • 25. G. Stolzenberg, Constructive normalization of an algebraic variety, Bull. Amer. Math. Soc. 74 (1968), 595-599. MR 37:201
  • 26. W. V. Vasconcelos, Computing the integral closure of an affine domain, Proc. Amer. Math. Soc. 113 (1991), 633-638. MR 92b:13013
  • 27. W. V. Vasconcelos, Computational Methods in Commutative Algebra and Algebraic Geometry, Springer, Heidelberg, 1998. MR 99c:13048

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 13B22, 13C15, 13H15, 13P10

Retrieve articles in all journals with MSC (2000): 13B22, 13C15, 13H15, 13P10


Additional Information

Bernd Ulrich
Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907-1395
Email: ulrich@math.purdue.edu

Wolmer V. Vasconcelos
Affiliation: Department of Mathematics, Rutgers University, 110 Frelinghuysen Rd., Piscataway, New Jersey 08854-8019
Email: vasconce@math.rutgers.edu

DOI: https://doi.org/10.1090/S0002-9947-04-03627-X
Keywords: Cohen-Macaulay ring, integral closure, isolated singularity, Jacobian ideal, multiplicity
Received by editor(s): May 10, 2002
Published electronically: September 23, 2004
Additional Notes: The authors were partially supported by the NSF
Dedicated: Dedicated to Aron Simis on the occasion of his sixtieth birthday
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society