Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Long-time behavior for a nonlinear fourth-order parabolic equation

Authors: María J. Cáceres, J. A. Carrillo and G. Toscani
Journal: Trans. Amer. Math. Soc. 357 (2005), 1161-1175
MSC (2000): Primary 35K65, 35B40, 35K35
Published electronically: August 11, 2004
MathSciNet review: 2110436
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the asymptotic behavior of solutions of the initial- boundary value problem, with periodic boundary conditions, for a fourth-order nonlinear degenerate diffusion equation with a logarithmic nonlinearity. For strictly positive and suitably small initial data we show that a positive solution exponentially approaches its mean as time tends to infinity. These results are derived by analyzing the equation verified by the logarithm of the solution.

References [Enhancements On Off] (What's this?)

  • 1. P. M. Bleher, J. L. Lebowitz, E. R. Speer, Existence and positivity of solutions of a fourth order nonlinear PDE describing interface fluctuations, Comm. Pure Appl. Math. 47, 923-942 (1994). MR 95e:35173
  • 2. J. A. Carrillo, A. Jüngel, P. Markowich, G. Toscani, A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math. 133, 1-82 (2001). MR 2002j:35188
  • 3. J. A. Carrillo, A. Jüngel, S. Tang, Positive entropy schemes for a nonlinear fourth-order parabolic equation, Discrete Cont. Dyn. Systems-B 1, 1-20 (2003).
  • 4. J. A. Carrillo, G. Toscani, Asymptotic $L^1$-decay of solutions of the porous medium equation to self-similarity, Indiana Univ. Math. J. 49, 113-141 (2000). MR 2001j:35155
  • 5. J. A. Carrillo, G. Toscani, Long-time asymptotics for strong solutions of the thin film equation, Comm. Math. Phys. 225, 551-571 (2002). MR 2002m:35115
  • 6. B. Derrida, J. L. Lebowitz, E. Speer, H. Spohn, Fluctuations of a stationary nonequilibrium interface, Phys. Rev. Lett. 67, 165-168 (1991). MR 92b:82052
  • 7. A. Jüngel, R. Pinnau, Global non-negative solutions of a nonlinear fourth-oder parabolic equation for quantum systems, SIAM J. Math. Anal. 32, 760-777 (2000). MR 2002j:35153
  • 8. A. Jüngel, R. Pinnau. A positivity preserving numerical scheme for a nonlinear fourth-order parabolic system, SIAM J. Numer. Anal. 39, 385-406 (2001). MR 2002h:82084
  • 9. A. Jüngel, G. Toscani, Decay rates of solutions to a nonlinear fourth-order parabolic equation, Z. Angew. Math. Phys. 54, 377-386 (2003).
  • 10. J. L. Lopez, J. Soler, G. Toscani, Time rescaling and asymptotic behavior of some fourth order degenerate diffusion equations, Comput. Math. Appl. 43, 721-736 (2002). MR 2002m:35127

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35K65, 35B40, 35K35

Retrieve articles in all journals with MSC (2000): 35K65, 35B40, 35K35

Additional Information

María J. Cáceres
Affiliation: Departamento de Matemática Aplicada, Universidad de Granada, 18071 Granada, Spain

J. A. Carrillo
Affiliation: ICREA (Institució Catalana de Recerca i Estudis Avançats) and Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 - Bellaterra, Spain

G. Toscani
Affiliation: Department of Mathematics, University of Pavia, via Ferrata 1, 27100 Pavia, Italy

Keywords: Asymptotic behavior, entropy dissipation, degenerate parabolic equation, diffusion equation
Received by editor(s): November 13, 2002
Received by editor(s) in revised form: October 2, 2003
Published electronically: August 11, 2004
Additional Notes: The authors were partially supported by the European IHP network “Hyperbolic and Kinetic Equations: Asymptotics, Numerics, Applications”, RNT2 2001 349 and Spanish-Italian bilateral HI01-175. The first and second authors acknowledge support from DGI-MCYT/FEDER project BFM2002-01710. The third author acknowledges partial support from the Italian Minister for Research, project “Mathematical Problems in Kinetic Theories”.
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society