Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Gröbner bases of associative algebras and the Hochschild cohomology

Author: Yuji Kobayashi
Journal: Trans. Amer. Math. Soc. 357 (2005), 1095-1124
MSC (2000): Primary 16E05, 16E40, 16S15
Published electronically: July 16, 2004
MathSciNet review: 2110434
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give an algorithmic way to construct a free bimodule resolution of an algebra admitting a Gröbner base. It enables us to compute the Hochschild (co)homology of the algebra. Let $A$ be a finitely generated algebra over a commutative ring $K$ with a (possibly infinite) Gröbner base $G$ on a free algebra $F$, that is, $A$ is the quotient $F/I(G)$ with the ideal $I(G)$ of $F$ generated by $G$. Given a Gröbner base $H$ for an $A$-subbimodule $L$ of the free $A$-bimodule $A \cdot X \cdot A = A_K \otimes K \cdot X \otimes_KA$ generated by a set $X$, we have a morphism $\partial$ of $A$-bimodules from the free $A$-bimodule $A \cdot H \cdot A$ generated by $H$ to $A \cdot X \cdot A$ sending the generator $[h]$to the element $h \in H$. We construct a Gröbner base $C$ on $F \cdot H \cdot F$ for the $A$-subbimodule Ker($\partial$) of $A \cdot H \cdot A$, and with this $C$ we have the free $A$-bimodule $A \cdot C \cdot A$ generated by $C$ and an exact sequence $A \cdot C \cdot A \rightarrow A \cdot H \cdot A \rightarrow A \cdot X \cdot A$. Applying this construction inductively to the $A$-bimodule $A$ itself, we have a free $A$-bimodule resolution of $A$.

References [Enhancements On Off] (What's this?)

  • 1. D.J. Anick, On the homology of associative algebras, Trans. Amer. Math. Soc. 296 (1987), 641-659. MR 87i:16046
  • 2. T. Becker and V. Weispfenning, Gröbner Bases, Springer, 1993. MR 95e:13018
  • 3. G. Bergman, The diamond lemma for ring theory, Adv. Math. 29 (1978), 178-218. MR 81b:16001
  • 4. R.V. Book and F. Otto, String-Rewriting Systems, Springer, 1993. MR 94f:68108
  • 5. B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassennringes nach einem nulldimensionalen Polynomideal, Ph.D. Thesis, Innsbruck, 1965.
  • 6. B. Buchberger, Gröbner bases: an algorithmic method in polynomial ideal theory, in: Recent Trends in Multidimensional System Theory, Reidel Publishing (1985), 184-232.
  • 7. H. Cartan and S Eilenberg, Homological Algebra, Princeton Univ. Press, 1956. MR 17:1040e
  • 8. D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms, Springer, 1991. MR 93j:13031
  • 9. E. Green, T. Mora and V. Ufnarovski, The non-commutative Gröbner freaks, in: Symbolic Rewriting Techniques, Birkhäuser (1998), 93-104. MR 99i:16050
  • 10. D. Happel, Hochschild cohomology of finite-dimensional algebras, Lect. Notes Math. 1404, Springer (1989), 108-126. MR 91b:16012
  • 11. G. Hochschild, On the cohomology groups of an associative algebra, Ann. Math. 46 (1945), 58-67. MR 6:114f
  • 12. G. Huet, Confluent reductions: abstract properties and applications to term rewriting systems, J. ACM 27 (1980), 797-821. MR 82a:68090
  • 13. A. Kandre-Rody and V. Weispfenning, Noncommutative Gröbner bases in algebra of solvable type, J. Symb. Comp. 9 (1990), 1-26. MR 91e:13025
  • 14. D. Kapur and P. Narendran, The Knuth-Bendix completion procedure and Thue systems, SIAM J. Comp. 14 (1985), 1052-1072. MR 87f:03103
  • 15. D.E. Knuth and P.B. Bendix, Simple word problems in universal algebras, in: Computational Problems in Abstract Algebra, Pergamon (1970), 263-297. MR 41:134
  • 16. Y. Kobayashi, Complete rewriting systems and homology of monoid algebras, J. Pure Appl. Algebra 65 (1990), 264-275. MR 92d:18003
  • 17. Y. Kobayashi, A finitely presented monoid which has solvable word problem but has no regular complete presentation, Theoret. Comp. Sci. 146 (1995), 321-329. MR 96d:20058
  • 18. H. Li, Noncommutative Gröbner Bases and Filtered-Graded Transfer, Lect. Notes Math. 1795, Springer, 2002. MR 2003i:16065
  • 19. A. C. Locateli, Hochschild cohomology of truncated quiver algebras, Comm. Algebra 27 (1999), 645-664. MR 2000d:16014
  • 20. K. Madlener and B. Reinert, Relating rewriting techniques on monoids and rings: congruences on monoids and ideals in monoid rings, Theoret. Comp. Sci. 208 (1998), 3-31. MR 99m:68102
  • 21. F. More, Gröbner bases for noncommutative polynomial rings, In: AAECC3, Lect. Notes Comp. Sci. 229, 253-262, Springer, 1986.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 16E05, 16E40, 16S15

Retrieve articles in all journals with MSC (2000): 16E05, 16E40, 16S15

Additional Information

Yuji Kobayashi
Affiliation: Department of Information Science, Toho University, Funabashi 274-8510, Japan

Received by editor(s): September 10, 2002
Received by editor(s) in revised form: September 9, 2003
Published electronically: July 16, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society