Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Resultants and discriminants of Chebyshev and related polynomials


Authors: Karl Dilcher and Kenneth B. Stolarsky
Journal: Trans. Amer. Math. Soc. 357 (2005), 965-981
MSC (2000): Primary 12E10, 12E05; Secondary 13P05, 33C45
Published electronically: October 19, 2004
MathSciNet review: 2110427
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the resultants with respect to $x$ of certain linear forms in Chebyshev polynomials with argument $x$ are again linear forms in Chebyshev polynomials. Their coefficients and arguments are certain rational functions of the coefficients of the original forms. We apply this to establish several related results involving resultants and discriminants of polynomials, including certain self-reciprocal quadrinomials.


References [Enhancements On Off] (What's this?)

  • 1. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964. MR 0208798 (34:8607)
  • 2. G.E. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge University Press, 1999. MR 1688958 (2000g:33001)
  • 3. T. M. Apostol, Resultants of cyclotomic polynomials, Proc. Amer. Math. Soc. 24 (1970), 457-462. MR 0251010 (40:4241)
  • 4. T. M. Apostol, The resultants of the cyclotomic polynomials $F_m(ax)$ and $F_n(bx)$, Math. Comp. 29 (1975), 1-6. MR 0366801 (51:3047)
  • 5. O. I. Cygankova, Formulae for calculating the discriminants of Jacobi, Laguerre and Hermite polynomials (Russian), Izv. Vyss. Ucebn. Zaved. Matematika 1962 (1962), no. 4 (29), 170-172. MR 0138805 (25:2248)
  • 6. D. Drucker and G. Greenfield, On the discriminant of a trinomial, Lin. Alg. Appl. 62 (1984), 105-112. MR 0761061 (86c:12005)
  • 7. I. M. Gel'fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston, 1994. MR 1264417 (95e:14045)
  • 8. M.E.H. Ismail, Discriminants and functions of the second kind of orthogonal polynomials, Result. Math. 34 (1998), 132-149. MR 1635590 (99g:42032)
  • 9. S. McCallum, Factors of iterated resultants and discriminants, J. Symbolic Computation 27 (1999), 367-385. MR 1681345 (2000b:13034)
  • 10. J. H. McKay and S. Sui-Sheng Wang, A chain rule for the resultant of two polynomials, Arch. Math. (Basel) 53 (1989), 347-351. MR 1015998 (90h:12006)
  • 11. J. H. McKay and S. Sui-Sheng Wang, A chain rule for the resultant of two homogeneous polynomials, Arch. Math. (Basel) 56 (1991), 352-361. MR 1094422 (92a:12006)
  • 12. M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge University Press, Cambridge, 1989. MR 1033013 (92b:11074)
  • 13. G. Rado, Die Diskriminante der allgemeinen Kreisteilungsgleichung, J. Reine Angew. Math. 131 (1906), 49-55.
  • 14. T. J. Rivlin, Chebyshev Polynomials, second edition, Wiley, New York, 1990. MR 1060735 (92a:41016)
  • 15. G. Shabat and A. Zvonkin, Plane trees and algebraic numbers. Jerusalem combinatorics '93, 233-275, Contemp. Math., 178, Amer. Math. Soc., Providence, RI, 1994. MR 1310587 (96d:14028)
  • 16. R. Swan, Factorization of polynomials over finite fields, Pacific J. Math. 12 (1962), 1099-1106. MR 0144891 (26:2432)
  • 17. G. Szegö, Orthogonal Polynomials, fourth edition, American Mathematical Society, Providence, Rhode Island, 1975. MR 0372517 (51:8724)
  • 18. B. L. van der Waerden, Modern Algebra, Vol. 1, Ungar, New York, 1949. MR 0029363 (10:587b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 12E10, 12E05, 13P05, 33C45

Retrieve articles in all journals with MSC (2000): 12E10, 12E05, 13P05, 33C45


Additional Information

Karl Dilcher
Affiliation: Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5
Email: dilcher@mathstat.dal.ca

Kenneth B. Stolarsky
Affiliation: Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, Illinois 61801
Email: stolarsk@math.uiuc.edu

DOI: http://dx.doi.org/10.1090/S0002-9947-04-03687-6
PII: S 0002-9947(04)03687-6
Keywords: Resultants, discriminants, Chebyshev polynomials, cyclotomic polynomials
Received by editor(s): November 1, 2002
Published electronically: October 19, 2004
Additional Notes: This research was supported in part by the Natural Sciences and Engineering Research Council of Canada
Article copyright: © Copyright 2004 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.