Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Geometry of Fermat adeles


Author: Alexandru Buium
Journal: Trans. Amer. Math. Soc. 357 (2005), 901-964
MSC (2000): Primary 11G05, 11G30
DOI: https://doi.org/10.1090/S0002-9947-04-03715-8
Published electronically: October 19, 2004
MathSciNet review: 2110426
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $L(a,s):=\sum_n c(n,a)n^{-s}$ is a family of ``geometric'' $L-$functions depending on a parameter $a$, then the function $(p,a)\mapsto c(p,a)$, where $p$ runs through the set of prime integers, is not a rational function and hence is not a function belonging to algebraic geometry. The aim of the paper is to show that if one enlarges algebraic geometry by ``adjoining a Fermat quotient operation'', then the functions $c(p,a)$ become functions in the enlarged geometry at least for $L-$functions of curves and Abelian varieties.


References [Enhancements On Off] (What's this?)

  • 1. M. Barcau, Isogeny covariant differential modular forms and the space of elliptic curves up to isogeny, Compositio Math. 137 (2003), 237-273. MR 1988499
  • 2. M.Barcau, A.Buium, Siegel differential modular forms, International Math. Res. Notices 28 (2002), 1459-1503. MR 1908022 (2003g:11044)
  • 3. P. Berthelot, A. Ogus, F-isocrystals and De Rham cohomology I, Invent. Math. 72 (1983), 159-199. MR 0700767 (85e:14025)
  • 4. S. Bosch, W.Lutkebohmert, M. Raynaud, Neron Models, Springer Verlag, 1990. MR 1045822 (91i:14034)
  • 5. A. Buium, Differential characters of Abelian varieties over $p-$adic fields, Invent. Math. 122 (1995), 309-340. MR 1358979 (96h:14036)
  • 6. A. Buium, Geometry of $p-$jets, Duke J. Math. 82, 2 (1996), 349-367. MR 1387233 (97c:14029)
  • 7. A. Buium, Differential characters and characteristic polynomial of Frobenius , J. reine angew. Math. 485 (1997), 209-219. MR 1442195 (98b:14023)
  • 8. A. Buium, Differential modular forms, J. reine angew. Math. 520 (2000), 95-167. MR 1748272 (2002d:11042)
  • 9. A. Buium, Infinitesimal Mordell-Lang, J. Number Theory 90 (2001), 185-206. MR 1858073 (2002j:11062)
  • 10. B. Dwork, A deformation theory for the zeta function of a hypersurface, Proc. Intl. Cong. Math. (1962), 249-258. MR 0175895 (31:171)
  • 11. B. Dwork, A. Ogus, Canonical liftings of Jacobians, Composition Math. 58 (1986), 111-131. MR 0834049 (87g:14021)
  • 12. G. Faltings, Ch-L. Chai, Degeneration of Abelian varieties, Ergebnisse 3.22, Springer, Berlin, New York, 1990. MR 1083353 (92d:14036)
  • 13. P. Griffiths, J. Harris, Principles of algebraic geometry, Reprint of the 1978 original, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. MR 1288523 (95d:14001)
  • 14. M. Hazewinkel, Formal Groups and Applications, Academic Press, 1978. MR 0506881 (82a:14020)
  • 15. C. Hurlburt, Isogeny covariant differential modular forms modulo $p$, Compositio Math. 128 (2001), 17-34. MR 1847663 (2002i:11053)
  • 16. Y. Ihara, On Fermat quotient and ``differentiation" of numbers, RIMS Kokyuroku 810 (1992), 324-341, (in Japanese). English translation by S. Hahn, Univ. of Georgia preprint. MR 1248209 (94m:11136)
  • 17. S. Lang, Algebraic number theory, Springer, Berlin, New York, 1986. MR 1282723 (95f:11085)
  • 18. N. Katz, W. Messing, Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math. 23 (1974), 73-77. MR 0332791 (48:11117)
  • 19. W. Messing, The crystals associated to Barsotti-Tate groups: with applications to abelian schemes, LNM 264, Springer, Berlin, New York, 1972. MR 0347836 (50:337)
  • 20. L. Miller, Curves over finite fields with invertible Hasse-Witt matrices, Math. Ann. 197 (1972). MR 0314849 (47:3399)
  • 21. P. Monski, G. Washnitzer, The construction of formal cohomology sheaves, Proc. Nat. Acad. Sci. USA 52 (1964), 1511-1514. MR 0171787 (30:2014)
  • 22. F. Oort, A stratification of a moduli space of polarized abelian varieties, in: Moduli of Curves and Abelian Varieties, C. Fber and E. Looijenga eds., Aspects of Mathematics 33, Vieweg, 1999. MR 1722538 (2001m:14065)
  • 23. J.P. Serre, Algebraic Groups and Class Fields, Springer, 1988. MR 0918564 (88i:14041)
  • 24. J.H. Silverman, The Arithmetic of Elliptic Curves, Springer, Berlin, New York, 1986. MR 0817210 (87g:11070)
  • 25. J.H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer, Berlin, New York, 1994. MR 1312368 (96b:11074)
  • 26. F. Voloch, On a question of Buium, Canad. Math. Bulletin, 43, 2 (2000), 205-209. MR 1754028 (2001g:11005)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11G05, 11G30

Retrieve articles in all journals with MSC (2000): 11G05, 11G30


Additional Information

Alexandru Buium
Affiliation: Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131
Email: buium@math.unm.edu

DOI: https://doi.org/10.1090/S0002-9947-04-03715-8
Received by editor(s): August 16, 2000
Received by editor(s) in revised form: May 14, 2002
Published electronically: October 19, 2004
Additional Notes: The author was partially supported by NSF grants DMS 9996078 and 0096946.
Article copyright: © Copyright 2004 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society