Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On adic genus and lambda-rings


Author: Donald Yau
Journal: Trans. Amer. Math. Soc. 357 (2005), 1341-1348
MSC (2000): Primary 55P15; Secondary 55N15, 55P60, 55S25
DOI: https://doi.org/10.1090/S0002-9947-04-03493-2
Published electronically: May 10, 2004
MathSciNet review: 2115369
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Sufficient conditions on a space are given which guarantee that the $K$-theory ring is an invariant of the adic genus. An immediate consequence of this result about adic genus is that for any positive integer $n$, the power series ring $\mathbf{Z} \lbrack \lbrack x_1, \ldots , x_n \rbrack \rbrack$ admits uncountably many pairwise non-isomorphic $\lambda$-ring structures.


References [Enhancements On Off] (What's this?)

  • 1. J. F. Adams, Localisation and completion, University of Chicago Press, Chicago, Ill., 1975. MR 54:8621
  • 2. M. F. Atiyah, Power operations in $K$-theory, Quart. J. Math. Oxford 17 (1966) 163-193. MR 34:2004
  • 3. M. F. Atiyah and D. O. Tall, Group representations, $\lambda$-rings and the $J$-homomorphism, Topology 8 (1969) 253-297. MR 39:5702
  • 4. J. Michael Boardman, Conditionally convergent spectral sequences, Contemp. Math. 239, Amer. Math. Soc., Providence, RI, 1999, pp. 49-84. MR 2000m:55024
  • 5. A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 51:1825
  • 6. F. J. B. J. Clauwens, Commuting polynomials and $\lambda$-ring structures on $\mathbf{Z} \lbrack x \rbrack$, J. Pure Appl. Algebra 95 (1994) 261-269. MR 95k:13008
  • 7. A. Jeanneret and A. Osse, The $K$-theory of $p$-compact groups, Comment. Math. Helv. 72 (1997) 556-581. MR 99d:55007
  • 8. D. C. Johnson and W. S. Wilson, $BP$ operations and Morava's extraordinary $K$-theories, Math. Z. 144 (1975) 55-75. MR 51:14025
  • 9. D. Knutson, $\lambda$-rings and the representation theory of the symmetric group, Lecture Notes in Mathematics, Vol. 308. Springer-Verlag, Berlin-New York, 1973. MR 51:679
  • 10. C. A. McGibbon, The Mislin genus of a space, The Hilton Symposium 1993 (Montreal, PQ), 75-102, CRM Proc. Lecture Notes, 6, Amer. Math. Soc., Providence, RI, 1994. MR 96a:55018
  • 11. J. M. Møller, The normalizer of the Weyl group, Math. Ann. 294 (1992) 59-80. MR 94b:55010
  • 12. D. Notbohm, Maps between classifying spaces and applications, J. Pure Appl. Algebra 89 (1993) 273-294. MR 95c:55019
  • 13. D. Notbohm and L. Smith, Fake Lie groups and maximal tori. I - III, Math. Ann. 288 (1990) 637-661, 663-673 and 290 (1991) 629-642.
  • 14. D. L. Rector, Loop structures on the homotopy type of $S^3$, Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle, Wash., 1971), pp. 99-105. Lecture Notes in Math., Vol. 249, Springer, Berlin, 1971. MR 49:3916
  • 15. -, Subgroups of finite dimensional topological groups, J. Pure Appl. Algebra 1 (1971) 253-273. MR 46:889
  • 16. Y. Shitanda, Uncountably many loop spaces of the same $n$-type for all $n$. I and II, Yokohama Math. J. 41 (1993) 17-24 and 41 (1994) 85-93.
  • 17. -, Uncountably many infinite loop spaces of the same $n$-type for all $n$, Math. J. Okayama Univ. 34 (1992) 217-223. MR 95j:55019
  • 18. -, Spaces of the same clone type, J. Math. Soc. Japan 48 (1996) 705-714. MR 97i:55015
  • 19. C. Wilkerson, Classification of spaces of the same $n$-type for all $n$, Proc. Amer. Math. Soc. 60 (1976) 279-285. MR 57:13930
  • 20. -, Applications of minimal simplicial groups, Topology 15 (1976) 111-130. MR 53:6551
  • 21. -, Lambda-rings, binomial domains, and vector bundles over ${C}P(\infty)$, Comm. Algebra 10 (1982) 311-328. MR 83f:55003

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 55P15, 55N15, 55P60, 55S25

Retrieve articles in all journals with MSC (2000): 55P15, 55N15, 55P60, 55S25


Additional Information

Donald Yau
Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green Street, Urbana, Illinois 61801
Email: dyau@math.uiuc.edu

DOI: https://doi.org/10.1090/S0002-9947-04-03493-2
Keywords: Adic genus, lambda-rings
Received by editor(s): May 1, 2002
Received by editor(s) in revised form: August 1, 2003
Published electronically: May 10, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society