Hyperpolygon spaces and their cores

Authors:
Megumi Harada and Nicholas Proudfoot

Journal:
Trans. Amer. Math. Soc. **357** (2005), 1445-1467

MSC (2000):
Primary 53C26; Secondary 16G20, 14D20

DOI:
https://doi.org/10.1090/S0002-9947-04-03522-6

Published electronically:
September 23, 2004

MathSciNet review:
2115372

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given an -tuple of positive real numbers , Konno (2000) defines the *hyperpolygon space* , a hyperkähler analogue of the Kähler variety parametrizing polygons in with edge lengths . The polygon space can be interpreted as the moduli space of stable representations of a certain quiver with fixed dimension vector; from this point of view, is the hyperkähler quiver variety defined by Nakajima. A quiver variety admits a natural -action, and the union of the precompact orbits is called the *core*. We study the components of the core of , interpreting each one as a moduli space of pairs of polygons in with certain properties. Konno gives a presentation of the cohomology ring of ; we extend this result by computing the -equivariant cohomology ring, as well as the ordinary and equivariant cohomology rings of the core components.

**[AB]**M. Atiyah and R. Bott.

The moment map and equivariant cohomology.*Topology*23 (1984) no. 1, 1-28. MR**85e:58041****[BD]**R. Bielawski and A. Dancer.

The geometry and topology of toric hyperkähler manifolds.*Comm. Anal. Geom.*8 (2000), 727-760. MR**2002c:53078****[HP]**M. Harada and N. Proudfoot.

Properties of the residual circle action on a hypertoric variety.

To appear in*Pacific Journal of Mathematics.***[HS]**T. Hausel and B. Sturmfels.

Toric hyperkähler varieties.

math.AG/0203096.**[HK1]**J-C. Hausmann, A. Knutson.

Polygon spaces and Grassmannians.*L'Enseignement Mathématique.*43 (1997), 173-198. MR**98e:58035****[HK2]**J-C. Hausmann, A. Knutson.

The cohomology ring of polygon spaces.*Ann. Inst. Fourier, Grenoble*48 (1998), no. 1, 281-321. MR**99a:58027****[Ki]**F. Kirwan.*Cohomology of quotients in symplectic and algebraic geometry*.

Mathematical Notes 31,

Princeton University Press, 1984. MR**86i:58050****[Kl]**A. Klyachko.

Spatial polygons and stable configurations of points in the projective line.

Algebraic geometry and its applications (Yaroslavl, 1992),*Aspects Math.*, Vieweg, Braunschweig (1994), 67-84. MR**95k:14015****[K1]**H. Konno.

Cohomology rings of toric hyperkähler manifolds.*Internat. J. Math.*11 (2000), no. 8, 1001-1026. MR**2001k:53089****[K2]**H. Konno.

On the cohomology ring of the HyperKähler analogue of the Polygon Spaces.

Integrable systems, topology, and physics (Tokyo, 2000), 129-149,*Contemp. Math.*, 309, Amer. Math. Soc., Providence, RI, 2002. MR**2003k:53111****[N1]**H. Nakajima.

Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras.*Duke Mathematical Journal*72 (1994) no. 2, 365-416. MR**95i:53051****[N2]**H. Nakajima.

Varieties associated with quivers.*Canadian Math. Soc. Conf. Proc.*19 (1996), 139-157. MR**97m:16022****[N3]**H. Nakajima.

Quiver varieties and Kac-Moody algebras.*Duke Math. J.*91 (1998), no. 3, 515-560. MR**99b:17033****[N4]**H. Nakajima.

Quiver varieties and finite dimensional representations of quantum affine algebras.*J. Amer. Math. Soc.*14 (2001), no. 1, 145-238 (electronic). MR**2002i:17023**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
53C26,
16G20,
14D20

Retrieve articles in all journals with MSC (2000): 53C26, 16G20, 14D20

Additional Information

**Megumi Harada**

Affiliation:
Department of Mathematics, University of Toronto, Ontario, Canada M5S 3G3

Email:
megumi@math.toronto.edu

**Nicholas Proudfoot**

Affiliation:
Department of Mathematics, University of California, Berkeley, California 94720

Email:
proudf@math.berkeley.edu

DOI:
https://doi.org/10.1090/S0002-9947-04-03522-6

Keywords:
Hyperk\"ahler geometry,
polygon space,
quiver variety,
equivariant cohomology

Received by editor(s):
August 23, 2003

Received by editor(s) in revised form:
October 1, 2003

Published electronically:
September 23, 2004

Article copyright:
© Copyright 2004
American Mathematical Society