Hardy space of exact forms on

Authors:
Zengjian Lou and Alan McIntosh

Journal:
Trans. Amer. Math. Soc. **357** (2005), 1469-1496

MSC (2000):
Primary 42B30; Secondary 35J45, 58A10

Published electronically:
September 2, 2004

MathSciNet review:
2115373

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the Hardy space of divergence-free vector fields on has a divergence-free atomic decomposition, and thus we characterize its dual as a variant of . Using the duality result we prove a ``div-curl" type theorem: for in , is equivalent to a -type norm of , where the supremum is taken over all with This theorem is used to obtain some coercivity results for quadratic forms which arise in the linearization of polyconvex variational integrals studied in nonlinear elasticity. In addition, we introduce Hardy spaces of exact forms on , study their atomic decompositions and dual spaces, and establish ``div-curl" type theorems on .

**[A]**Robert A. Adams,*Sobolev spaces*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR**0450957****[B]**John M. Ball,*Convexity conditions and existence theorems in nonlinear elasticity*, Arch. Rational Mech. Anal.**63**(1976/77), no. 4, 337–403. MR**0475169****[C]**M. Costabel, Personal communication.**[CLMS]**R. Coifman, P.-L. Lions, Y. Meyer, and S. Semmes,*Compensated compactness and Hardy spaces*, J. Math. Pures Appl. (9)**72**(1993), no. 3, 247–286 (English, with English and French summaries). MR**1225511****[CMS]**R. R. Coifman, Y. Meyer, and E. M. Stein,*Some new function spaces and their applications to harmonic analysis*, J. Funct. Anal.**62**(1985), no. 2, 304–335. MR**791851**, 10.1016/0022-1236(85)90007-2**[CW]**Ronald R. Coifman and Guido Weiss,*Extensions of Hardy spaces and their use in analysis*, Bull. Amer. Math. Soc.**83**(1977), no. 4, 569–645. MR**0447954**, 10.1090/S0002-9904-1977-14325-5**[GHL]**J. E. Gilbert, J. A. Hogan, J. D. Lakey,*Atomic decomposition of divergence-free Hardy spaces*, Mathematica Moraviza, Special Volume, 1997, Proc. IWAA, 33-52.**[Gi]**Mariano Giaquinta,*Introduction to regularity theory for nonlinear elliptic systems*, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1993. MR**1239172****[GMT]**Giuseppe Geymonat, Stefan Müller, and Nicolas Triantafyllidis,*Homogenization of non-linearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity*, Arch. Rational Mech. Anal.**122**(1993), no. 3, 231–290. MR**1219609**, 10.1007/BF00380256**[Gr]**Loukas Grafakos,*Hardy space estimates for multilinear operators. II*, Rev. Mat. Iberoamericana**8**(1992), no. 1, 69–92. MR**1178449**, 10.4171/RMI/117**[GR]**Vivette Girault and Pierre-Arnaud Raviart,*Finite element methods for Navier-Stokes equations*, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR**851383****[HLMZ]**Jeff Hogan, Chun Li, Alan McIntosh, and Kewei Zhang,*Global higher integrability of Jacobians on bounded domains*, Ann. Inst. H. Poincaré Anal. Non Linéaire**17**(2000), no. 2, 193–217 (English, with English and French summaries). MR**1753093**, 10.1016/S0294-1449(00)00108-6**[ISS]**T. Iwaniec, C. Scott, and B. Stroffolini,*Nonlinear Hodge theory on manifolds with boundary*, Ann. Mat. Pura Appl. (4)**177**(1999), 37–115. MR**1747627**, 10.1007/BF02505905**[La]**Robert H. Latter,*A characterization of 𝐻^{𝑝}(𝑅ⁿ) in terms of atoms*, Studia Math.**62**(1978), no. 1, 93–101. MR**0482111****[Le]**Pierre Gilles Lemarie-Rieusset,*Ondelettes vecteurs à divergence nulle*, C. R. Acad. Sci. Paris Sér. I Math.**313**(1991), no. 5, 213–216. MR**1126382****[LM1]**Z. Lou, A. M Intosh,*Divergence-free Hardy space on*, Science in China, Ser. A,**47**(2004), 198-208.**[LM2]**Z. Lou, A. M Intosh,*Hardy spaces of exact forms on Lipschitz domains in*, Indiana Univ. Math. J.**53**(2004), 583-611.**[LMWZ]**C. Li, A. McIntosh, K. Zhang, and Z. Wu,*Compensated compactness, paracommutators, and Hardy spaces*, J. Funct. Anal.**150**(1997), no. 2, 289–306. MR**1479542**, 10.1006/jfan.1997.3125**[N]**Jindřich Nečas,*Les méthodes directes en théorie des équations elliptiques*, Masson et Cie, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967 (French). MR**0227584****[Sc]**Günter Schwarz,*Hodge decomposition—a method for solving boundary value problems*, Lecture Notes in Mathematics, vol. 1607, Springer-Verlag, Berlin, 1995. MR**1367287****[St1]**Elias M. Stein,*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095****[St2]**Elias M. Stein,*Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR**1232192****[SW]**Elias M. Stein and Guido Weiss,*On the theory of harmonic functions of several variables. I. The theory of 𝐻^{𝑝}-spaces*, Acta Math.**103**(1960), 25–62. MR**0121579****[Z1]**Kewei Zhang,*On the coercivity of elliptic systems in two-dimensional spaces*, Bull. Austral. Math. Soc.**54**(1996), no. 3, 423–430. MR**1419605**, 10.1017/S0004972700021833**[Z2]**Ke Wei Zhang,*A counterexample in the theory of coerciveness for elliptic systems*, J. Partial Differential Equations**2**(1989), no. 3, 79–82. MR**1026095****[Z3]**Ke Wei Zhang,*A further comment on the coerciveness theory for elliptic systems*, J. Partial Differential Equations**2**(1989), no. 4, 62–66. MR**1027981**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
42B30,
35J45,
58A10

Retrieve articles in all journals with MSC (2000): 42B30, 35J45, 58A10

Additional Information

**Zengjian Lou**

Affiliation:
Institute of Mathematics, Shantou University, Shantou Guangdong 515063, People’s Republic of China

Email:
zjlou@stu.edu.cn

**Alan McIntosh**

Affiliation:
Center for Mathematics and its Applications, Mathematical Sciences Institute, the Australian National University, Canberra, Australian Capital Territory 0200, Australia

Email:
alan@maths.anu.edu.au

DOI:
http://dx.doi.org/10.1090/S0002-9947-04-03535-4

Keywords:
Divergence-free Hardy space,
Hardy space of exact forms,
atomic decomposition,
$BMO$,
div-curl,
coercivity

Received by editor(s):
May 16, 2003

Received by editor(s) in revised form:
October 19, 2003

Published electronically:
September 2, 2004

Additional Notes:
The authors are supported by the Australian Government through the Australian Research Council. This paper was written when both authors were at the Center for Mathematics and its Applications of the Mathematical Sciences Institute at the Australian National University.

Article copyright:
© Copyright 2004
American Mathematical Society