Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Persistence of lower dimensional tori of general types in Hamiltonian systems

Authors: Yong Li and Yingfei Yi
Journal: Trans. Amer. Math. Soc. 357 (2005), 1565-1600
MSC (2000): Primary 37J40
Published electronically: October 5, 2004
MathSciNet review: 2115377
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This work is a generalization to a result of J. You (1999). We study the persistence of lower dimensional tori of general type in Hamiltonian systems of general normal forms. By introducing a modified linear KAM iterative scheme to deal with small divisors, we shall prove a persistence result, under a Melnikov type of non-resonance condition, which particularly allows multiple and degenerate normal frequencies of the unperturbed lower dimensional tori.

References [Enhancements On Off] (What's this?)

  • 1. V. I. Arnold, Proof of a theorem by A.N. Kolmogorov on the preservation of quasi-periodic motions under small perturbations of the Hamiltonian, Usp. Mat. Nauk.18 (1963), 13-40 MR 29:328
  • 2. J. Bourgain, Construction of quasi-periodic solution for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Int. Math. Res. Notices 11 (1994), 475-497 MR 96f:58170
  • 3. J. Bourgain, On Melnikov's persistency problem, Math. Res. Lett. 4 (1997), 445-458 MR 98h:58166
  • 4. O. M. Braun and Y. S. Kivshar, Nonlinear dynamics of the Frenkel-Kontorova model, Physics Reports 306 (1998), 1-108 MR 99j:82050
  • 5. H. Broer, G. Huitema and F. Takens, Unfoldings of quasi-periodic tori, Mem. Amer. Math. Soc. 83 (1990), 13-42 MR 91e:58156
  • 6. H. Broer, G. Huitema and M. B. Sevryuk, Families of quasi-periodic motions in dynamical systems depending on parameters, Nonlinear Dynamical Systems and Chaos (Proc. dyn. syst. conf., H. W. Broer et. al., eds..), Birkhäuser, Basel, 1996, 171-211 MR 96m:58003
  • 7. H. Broer, G. Huitema and M. Sevryuk, Quasi-periodic motions in families of dynamical systems, Lect. Notes Math. 1645, Springer-Verlag, 1996 MR 99d:58142
  • 8. S.-N. Chow, C. Li and D. Wang, Normal forms and bifurcation of planar vector fields, Cambridge University Press, 1994 MR 95i:58161
  • 9. F. Cong, T. Küpper, Y. Li and J. You, KAM-type theorem on resonant surfaces for nearly integrable Hamiltonian systems, J. Nonl. Sci. 10 (2000), 49-68 MR 2001b:37086
  • 10. L. H. Eliasson, Floquet solutions for the $1$-dimensional quasi-periodic Schrödinger equation, Comm. Math. Phy. 146 (1992), 447-482 MR 93d:34141
  • 11. L. H. Eliasson, Perturbations of stable invariant tori for Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. Ser.IV 15 (1988), 115-147 MR 91b:58060
  • 12. S. M. Graff, On the continuation of hyperbolic invariant tori for Hamiltonian systems, J. Differential Equations 15 (1974), 1-69 MR 51:1878
  • 13. H. He and J. You, On Eliasson's full measure reducibility problem, preprint 2002
  • 14. H. H. Jong, Quasiperiodic breathers in systems of weakly coupled pendulums, Ph. D. thesis, Groningen University, 1999
  • 15. A. Jorba and C. Simo, On the reducibility of linear differential equations with quasiperiodic coefficients, J. Differential Equations 98 (1992), 111-124 MR 94f:34024
  • 16. A. Jorba and J. Villanueva, On the persistence lower dimensional invariant tori under quasiperiodic perturbations, J. Nonl. Sci. 7 (1997), 427-473 MR 98h:58168
  • 17. A. N. Kolmogorov, On the conservation of conditionally periodic motions for a small change in Hamilton's function, Dokl. Akad. Nauk. SSSR 98 (1954), 525-530 MR 16:924c
  • 18. R. Krikorian, Global density of reducible quasi-periodic cocycles on $T^1\times SU(2)$, Annals of Math. 154 (2001), 269-326 MR 2002m:37039
  • 19. S. B. Kuksin, Hamiltonian perturbations of infinite dimensional linear systems with an imaginary spectrum, Funct. Anal. Appl. 21 (1987), 192-205 MR 89a:34073
  • 20. S. B. Kuksin, Nearly integrable infinite-dimensional Hamiltonian systems, Lect. Notes Math., 1556, Springer-Verlag, 1993 MR 95k:58145
  • 21. Y. Li and Y. Yi, On Poincaré - Treshchev tori in Hamiltonian systems, to appear in Proc. Equadiff 2003.
  • 22. Y. Li and Y. Yi, Persistence of hyperbolic tori in Hamiltonian systems, to appear in J. Differential Equations
  • 23. Y. Li and Y. Yi, A quasi-periodic Poincaré's theorem, Math. Ann. 326 (2003), 649-690
  • 24. Y. Li and Y. Yi, Persistence of invariant tori in generalized Hamiltonian systems, Erg. Th. Dyn. Sys. 22 (2002), 1233-1261 MR 2003g:37107
  • 25. V. K. Melnikov, On some cases of conservation of conditionally periodic motions under a small change of the Hamiltonian function, Sov. Math. Dokl. 6 (1965), 1592-1596
  • 26. V. K. Melnikov, A family of conditionally periodic solutions of a Hamiltonian system, Sov. Math. Dokl. 9 (1968), 882-886
  • 27. J. Moser, Convergent series expansions for quasi-periodic motions, Math. Ann. 169 (1967), 136-176 MR 34:7888
  • 28. J. Moser, On invariant curves of area preserving mappings of an annulus, Nachr. Akad. Wiss. Gött. Math. Phys. K1 (1962), 1-20 MR 26:5255
  • 29. J. Moser and J. Pöschel, An extension of a result by Dinaburg and Sinai on quasi-periodic potentials, Comment. Math. Helv. 59 (1984), 39-85 MR 85m:34064
  • 30. I. O. Parasyuk, On preservation of multidimensional invariant tori of Hamiltonian systems, Ukrain Mat. Zh. 36 (1984), 467-473 MR 86a:58088
  • 31. J. Pöschel, Integrability of Hamiltonian systems on Cantor-like sets, Comm. Pure Appl. Math. 35 (1982), 653-696 MR 84d:58039
  • 32. J. Pöschel, On the elliptic lower dimensional tori in Hamiltonian systems, Math. Z. 202 (1989), 559-608 MR 91a:58065
  • 33. J. Pöschel, A KAM-theorem for some nonlinear partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. Ser. IV 23 (1996), 119-148 MR 97g:58146
  • 34. M. B. Sevryuk, Excitation of elliptic normal models of invariant tori in Hamiltonian systems, Amer. Math. Soc. Transl. 180 (1997), 209-218 MR 2001j:37109
  • 35. C. L. Siegel and J. Moser, Lectures on celestial mechanics, Berlin, Heidelberg, New York, Springer, 1971 MR 58:19464
  • 36. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, New Jersey, 1970 MR 44:7280
  • 37. D. V. Treshchev, The mechanism of destruction of resonance tori of Hamiltonian systems, Math. USSR Sb. 68 (1991), 181-203 MR 91i:58124
  • 38. J. Xu and J. You, On reducibility of linear differential equations with almost periodic coefficients, Chinese J. Contemp. Math. 17 (1996), 375-386 MR 99a:34023
  • 39. J. X. Xu, J. G. You and Q. J. Qiu, Invariant tori for nearly integrable Hamiltonian systems with degeneracy, Math. Z. 226 (1997), 375-387 MR 98k:58196
  • 40. J. G. You, Perturbations of lower dimensional tori for Hamiltonian systems, J. Differential Equations 152 (1999), 1-29 MR 2000c:37090
  • 41. E. Zehnder, Generalized implicit function theorem with applications to some small divisors I and II, Comm. Pure Appl. Math. 28 (1975), 91-140; 29 (1976), 49-111 12pt

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 37J40

Retrieve articles in all journals with MSC (2000): 37J40

Additional Information

Yong Li
Affiliation: Department of Mathematics, Jilin University, Changchun 130012, People’s Republic of China

Yingfei Yi
Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332

Keywords: Hamiltonian systems, invariant tori, KAM theory, Melnikov problem, persistence
Received by editor(s): November 14, 2001
Received by editor(s) in revised form: November 11, 2003
Published electronically: October 5, 2004
Additional Notes: The first author was partially supported by NSFC grant 19971042, National 973 Project of China: Nonlinearity, the outstanding young’s project of Ministry of Education of China, and National outstanding young’s award of China
The second author was partially supported by NSF grants DMS9803581 and DMS-0204119
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society