Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Powers in recurrence sequences: Pell equations
HTML articles powered by AMS MathViewer

by Michael A. Bennett PDF
Trans. Amer. Math. Soc. 357 (2005), 1675-1691 Request permission

Abstract:

In this paper, we present a new technique for determining all perfect powers in so-called Pell sequences. To be precise, given a positive nonsquare integer $D$, we show how to (practically) solve Diophantine equations of the form \[ x^2 - Dy^{2n} =1 \] in integers $x, y$ and $n \geq 2$. Our method relies upon Frey curves and corresponding Galois representations and eschews lower bounds for linear forms in logarithms. Along the way, we sharpen and generalize work of Cao, Af Ekenstam, Ljunggren and Tartakowsky on these and related questions.
References
  • Michael A. Bennett, Rational approximation to algebraic numbers of small height: the Diophantine equation $|ax^n-by^n|=1$, J. Reine Angew. Math. 535 (2001), 1–49. MR 1837094, DOI 10.1515/crll.2001.044
  • M.A. Bennett, Products of consecutive integers, Bull. London Math. Soc. 36 (2004), 683–694.
  • M.A. Bennett, The Diophantine inequality $|ax^n-by^n| \leq 2$, submitted for publication.
  • M.A. Bennett and C. Skinner, Ternary Diophantine equations via Galois representations and modular forms, Canad. J. Math. 56 (2004), 23–54.
  • M.A. Bennett, V. Vatsal and S. Yazdani, Ternary Diophantine equations of signature $(p,p,3)$, Compositio Math., to appear.
  • Michael A. Bennett and Gary Walsh, The Diophantine equation $b^2X^4-dY^2=1$, Proc. Amer. Math. Soc. 127 (1999), no. 12, 3481–3491. MR 1625772, DOI 10.1090/S0002-9939-99-05041-8
  • Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to exponential Diophantine equations I: Fibonacci and Lucas perfect powers, preprint.
  • Zhen Fu Cao, On the Diophantine equation $x^{2n}-{\scr D}y^2=1$, Proc. Amer. Math. Soc. 98 (1986), no. 1, 11–16. MR 848864, DOI 10.1090/S0002-9939-1986-0848864-4
  • J. H. E. Cohn, Perfect Pell powers, Glasgow Math. J. 38 (1996), no. 1, 19–20. MR 1373953, DOI 10.1017/S0017089500031207
  • Henri Darmon and Loïc Merel, Winding quotients and some variants of Fermat’s last theorem, J. Reine Angew. Math. 490 (1997), 81–100. MR 1468926
  • A. Af Ekenstam, Contributions to the Theory of the Diophantine Equation $Ax^n-By^n=C$, Ph.D. Thesis, Uppsala, 1959.
  • J. J. Corliss, Upper limits to the real roots of a real algebraic equation, Amer. Math. Monthly 46 (1939), 334–338. MR 4
  • A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8
  • A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8
  • G. Martin, Dimensions of spaces of cusp forms and newforms on $\Gamma _0(N)$ and $\Gamma _1(N)$, preprint.
  • Maurice Mignotte, A note on the equation $ax^n-by^n=c$, Acta Arith. 75 (1996), no. 3, 287–295. MR 1387866, DOI 10.4064/aa-75-3-287-295
  • L. J. Mordell, Diophantine equations, Pure and Applied Mathematics, Vol. 30, Academic Press, London-New York, 1969. MR 0249355
  • Attila Pethő, Perfect powers in second order linear recurrences, J. Number Theory 15 (1982), no. 1, 5–13. MR 666345, DOI 10.1016/0022-314X(82)90079-8
  • A. Pethő, The Pell sequence contains only trivial perfect powers, Sets, graphs and numbers (Budapest, 1991) Colloq. Math. Soc. János Bolyai, vol. 60, North-Holland, Amsterdam, 1992, pp. 561–568. MR 1218218
  • Attila Pethő, Diophantine properties of linear recursive sequences. II, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 17 (2001), no. 2, 81–96. MR 1887650
  • T. N. Shorey and C. L. Stewart, Pure powers in recurrence sequences and some related Diophantine equations, J. Number Theory 27 (1987), no. 3, 324–352. MR 915504, DOI 10.1016/0022-314X(87)90071-0
  • C.L. Siegel, Die Gleichung $ax^n-by^n=c$, Math. Ann. 114 (1937), 57–68.
  • W. Stein, The Modular Forms Database, http://modular.fas.harvard.edu/Tables (2003).
  • C. Størmer, Quelques theéorèmes sur l’équation de Pell $x^2-Dy^2 = \pm 1$ et leurs applications, Christiania Videnskabens Selskabs Skrifter, Math. Nat. Kl. 1897, No. 2, 48 pages.
  • W. Tartakowsky, Auflösung der Gleichung $x^4 - \rho y^4 = 1$, Bull. de l’Académie des Sciences URSS 20 (1926), 310–324.
  • A. Thue, Berechnung aller Lösungen dewisser Gleichungen von der form $ax^r-by^r=f$, Vidensk. Skrifter I, No. 4, Kristiania, 1918.
  • Jan Turk, Polynomial values and almost powers, Michigan Math. J. 29 (1982), no. 2, 213–220. MR 654481
  • P. G. Walsh, An improved method for solving the family of Thue equations $X^4-2rX^2Y^2-sY^4=1$, Number theory for the millennium, III (Urbana, IL, 2000) A K Peters, Natick, MA, 2002, pp. 375–383. MR 1956286
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11D41, 11D45, 11B37
  • Retrieve articles in all journals with MSC (2000): 11D41, 11D45, 11B37
Additional Information
  • Michael A. Bennett
  • Affiliation: Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2
  • MR Author ID: 339361
  • Email: bennett@math.ubc.ca
  • Received by editor(s): July 20, 2003
  • Received by editor(s) in revised form: December 4, 2003
  • Published electronically: October 28, 2004
  • Additional Notes: This work was supported in part by a grant from NSERC
  • © Copyright 2004 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 357 (2005), 1675-1691
  • MSC (2000): Primary 11D41; Secondary 11D45, 11B37
  • DOI: https://doi.org/10.1090/S0002-9947-04-03586-X
  • MathSciNet review: 2115381