Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Powers in recurrence sequences: Pell equations


Author: Michael A. Bennett
Journal: Trans. Amer. Math. Soc. 357 (2005), 1675-1691
MSC (2000): Primary 11D41; Secondary 11D45, 11B37
DOI: https://doi.org/10.1090/S0002-9947-04-03586-X
Published electronically: October 28, 2004
MathSciNet review: 2115381
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we present a new technique for determining all perfect powers in so-called Pell sequences. To be precise, given a positive nonsquare integer $D$, we show how to (practically) solve Diophantine equations of the form

\begin{displaymath}x^2 - Dy^{2n} =1 \end{displaymath}

in integers $x, y$ and $n \geq 2$. Our method relies upon Frey curves and corresponding Galois representations and eschews lower bounds for linear forms in logarithms. Along the way, we sharpen and generalize work of Cao, Af Ekenstam, Ljunggren and Tartakowsky on these and related questions.


References [Enhancements On Off] (What's this?)

  • 1. M.A. Bennett,
    Rational approximation to algebraic numbers of small height: the Diophantine equation $\vert ax^n-by^n\vert=1$,
    J. Reine Angew Math. 535 (2001), 1-49. MR 2002d:11079
  • 2. M.A. Bennett,
    Products of consecutive integers,
    Bull. London Math. Soc. 36 (2004), 683-694.
  • 3. M.A. Bennett,
    The Diophantine inequality $\vert ax^n-by^n\vert \leq 2$,
    submitted for publication.
  • 4. M.A. Bennett and C. Skinner,
    Ternary Diophantine equations via Galois representations and modular forms,
    Canad. J. Math. 56 (2004), 23-54.
  • 5. M.A. Bennett, V. Vatsal and S. Yazdani,
    Ternary Diophantine equations of signature $(p,p,3)$,
    Compositio Math., to appear.
  • 6. M.A. Bennett and P.G. Walsh,
    The Diophantine equation $b^2x^4-dy^2=1$,
    Proc. Amer. Math. Soc. 127 (1999), 3481-3491. MR 2000b:11025
  • 7. Y. Bugeaud, M. Mignotte and S. Siksek,
    Classical and modular approaches to exponential Diophantine equations I: Fibonacci and Lucas perfect powers,
    preprint.
  • 8. Z. Cao,
    On the Diophantine equation $x^{2n}- D y^2=1$,
    Proc. Amer. Math. Soc. 98 (1986), no. 1, 11-16. MR 87i:11035
  • 9. J.H.E. Cohn,
    Perfect Pell powers,
    Glasgow Math. J. 38 (1996), 19-20. MR 97b:11047
  • 10. H. Darmon and L. Merel,
    Winding quotients and some variants of Fermat's Last Theorem,
    J. Reine Angew. Math. 490 (1997), 81-100. MR 98h:11076
  • 11. A. Af Ekenstam,
    Contributions to the Theory of the Diophantine Equation $Ax^n-By^n=C$,
    Ph.D. Thesis, Uppsala, 1959.
  • 12. L.K. Hua,
    On the least solution of Pell's equation,
    Bull. Amer. Math. Soc. 48 (1942), 731-735. MR 4:130f
  • 13. W. Ljunggren,
    Zur Theorie der Gleichung $x^2+1=Dy^4$,
    Avh. Norske. vid. Akad. 1, No. 5 (1942). MR 8;6f
  • 14. W. Ljunggren,
    A Diophantine equation with two unknowns,
    C.R. Dixième Congrès Math. Scandinaves 1946, 265-270. MR 8:368i
  • 15. G. Martin,
    Dimensions of spaces of cusp forms and newforms on $\Gamma_0(N)$ and $\Gamma_1(N)$,
    preprint.
  • 16. M. Mignotte,
    A note on the equation $ax\sp n-by\sp n=c$,
    Acta Arith. 75 (1996), 287-295. MR 97c:11042
  • 17. L. J. Mordell,
    Diophantine Equations,
    Academic Press, London, 1969. MR 40:2600
  • 18. A. Petho,
    Perfect powers in second order linear recurrences,
    J. Number Theory 15 (1982), 5-13. MR 84f:10024
  • 19. A. Petho,
    The Pell sequence contains only trivial perfect powers.
    Sets, graphs and numbers (Budapest, 1991), 561-568, Colloq. Math. Soc. János Bolyai, 60, North-Holland, Amsterdam, 1992. MR 94e:11031
  • 20. A. Petho,
    Diophantine properties of linear recursive sequences. II,
    Acta Math. Acad. Paedagog. Nyhzi. (N.S.) 17 (2001), 81-96. MR 2003d:11021
  • 21. T. Shorey and C.L. Stewart,
    Pure powers in recurrence sequences and some related Diophantine equations,
    J. Number Theory 27 (1987), 324-352. MR 89a:11024
  • 22. C.L. Siegel,
    Die Gleichung $ax^n-by^n=c$,
    Math. Ann. 114 (1937), 57-68.
  • 23. W. Stein, The Modular Forms Database, http://modular.fas.harvard.edu/Tables (2003).
  • 24. C. Størmer,
    Quelques theéorèmes sur l'équation de Pell $x^2-Dy^2 = \pm 1$ et leurs applications,
    Christiania Videnskabens Selskabs Skrifter, Math. Nat. Kl. 1897, No. 2, 48 pages.
  • 25. W. Tartakowsky,
    Auflösung der Gleichung $x^4 - \rho y^4 = 1$,
    Bull. de l'Académie des Sciences URSS 20 (1926), 310-324.
  • 26. A. Thue,
    Berechnung aller Lösungen dewisser Gleichungen von der form $ax^r-by^r=f$,
    Vidensk. Skrifter I, No. 4, Kristiania, 1918.
  • 27. J. Turk,
    Polynomial values and almost powers,
    Michigan Math. J. 29 (1982), 213-220. MR 0654481 (83h:10040)
  • 28. P.G. Walsh,
    An improved method for solving the family of Thue equations $X^4 - 2r X^2Y^2 - sY^4 = 1$,
    Number theory for the millenium (Urbana, IL, 2000), 375-383,
    A.K. Peters, Natick, MA, 2002. MR 2003k:11052

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11D41, 11D45, 11B37

Retrieve articles in all journals with MSC (2000): 11D41, 11D45, 11B37


Additional Information

Michael A. Bennett
Affiliation: Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2
Email: bennett@math.ubc.ca

DOI: https://doi.org/10.1090/S0002-9947-04-03586-X
Keywords: Pell sequences, perfect powers, Thue equations
Received by editor(s): July 20, 2003
Received by editor(s) in revised form: December 4, 2003
Published electronically: October 28, 2004
Additional Notes: This work was supported in part by a grant from NSERC
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society