Plane Cremona maps, exceptional curves and roots
Author:
Maria AlberichCarramiñana
Journal:
Trans. Amer. Math. Soc. 357 (2005), 19011914
MSC (2000):
Primary 14J26, 14E05, 14E07
Published electronically:
December 10, 2004
MathSciNet review:
2115081
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We address three different questions concerning exceptional and root divisors (of arithmetic genus zero and of selfintersection and , respectively) on a smooth complex projective surface which admits a birational morphism to . The first one is to find criteria for the properness of these divisors, that is, to characterize when the class of is in the orbit of the class of the total transform of some point blown up by if is exceptional, or in the orbit of a simple root if is root, where is the Weyl group acting on ; we give an arithmetical criterion, which adapts an analogous criterion suggested by Hudson for homaloidal divisors, and a geometrical one. Secondly, we prove that the irreducibility of the exceptional or root divisor is a necessary and sufficient condition in order that could be transformed into a line by some plane Cremona map, and in most cases for its contractibility. Finally, we provide irreducibility criteria for proper homaloidal, exceptional and effective root divisors.
 1.
Maria
AlberichCarramiñana, Geometry of the plane Cremona
maps, Lecture Notes in Mathematics, vol. 1769, SpringerVerlag,
Berlin, 2002. MR
1874328 (2002m:14008)
 2.
Eduardo
CasasAlvero, Singularities of plane curves, London
Mathematical Society Lecture Note Series, vol. 276, Cambridge
University Press, Cambridge, 2000. MR 1782072
(2003b:14035)
 3.
Michel
Demazure, Henry
Charles Pinkham, and Bernard
Teissier (eds.), Séminaire sur les Singularités des
Surfaces, Lecture Notes in Mathematics, vol. 777, Springer,
Berlin, 1980 (French). Held at the Centre de Mathématiques de
l’École Polytechnique, Palaiseau, 1976–1977. MR 579026
(82d:14021)
 4.
Igor
Dolgachev and David
Ortland, Point sets in projective spaces and theta functions,
Astérisque 165 (1988), 210 pp. (1989) (English,
with French summary). MR 1007155
(90i:14009)
 5.
P. Du Val, On the Kantor group of a set of points in a plane, Proc. London Math. Soc. 42 (1936), no. 2, 1851.
 6.
F. Enriques and O. Chisini, Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche, N. Zanichelli, Bologna, 1915.
 7.
Brian
Harbourne, Blowingsup of 𝑃² and their
blowingsdown, Duke Math. J. 52 (1985), no. 1,
129–148. MR
791295 (86m:14026), http://dx.doi.org/10.1215/S0012709485052081
 8.
Robin
Hartshorne, Algebraic geometry, SpringerVerlag, New York,
1977. Graduate Texts in Mathematics, No. 52. MR 0463157
(57 #3116)
 9.
H.P. Hudson, Cremona transformations in plane and space, Cambridge University Press, 1927.
 10.
M. Lahyane, Irreducibility of the classes on smooth rational surfaces, Preprint IC2001098P of The Abdus Salam International Centre for Theoretical Physics (2001).
 11.
Eduard
Looijenga, Rational surfaces with an anticanonical cycle, Ann.
of Math. (2) 114 (1981), no. 2, 267–322. MR 632841
(83j:14030), http://dx.doi.org/10.2307/1971295
 12.
Yu.
I. Manin, Cubic forms, 2nd ed., NorthHolland Mathematical
Library, vol. 4, NorthHolland Publishing Co., Amsterdam, 1986.
Algebra, geometry, arithmetic; Translated from the Russian by M.
Hazewinkel. MR
833513 (87d:11037)
 13.
Masayoshi
Nagata, On rational surfaces. II, Mem. Coll. Sci. Univ. Kyoto
Ser. A Math. 33 (1960/1961), 271–293. MR 0126444
(23 #A3740)
 14.
I. R. Shafarevich, Algebraic surfaces, Proceedings of the Steklov Institute of Mathematics, vol. 75, American Mathematical Society, 1967.
 1.
 M. AlberichCarramiñana, Geometry of the plane Cremona maps, Lecture Notes in Math., vol. 1769, Springer, Heidelberg, 2002. MR 1874328 (2002m:14008)
 2.
 E. CasasAlvero, Singularities of plane curves, London Math. Soc. Lecture Note Ser., vol. 276, Cambridge University Press, 2000. MR 1782072 (2003b:14035)
 3.
 M. Demazure, Surfaces de del Pezzo I, II, III, IV, V, Lecture Notes in Math., vol. 777, Springer, Heidelberg, 1976. MR 0579026 (82d:14021)
 4.
 I. Dolgachev and D. Ortland, Point sets in projective spaces and theta functions, Astérisque, vol. 165, Soc. Math. France, Paris, 1988. MR 1007155 (90i:14009)
 5.
 P. Du Val, On the Kantor group of a set of points in a plane, Proc. London Math. Soc. 42 (1936), no. 2, 1851.
 6.
 F. Enriques and O. Chisini, Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche, N. Zanichelli, Bologna, 1915.
 7.
 B. Harbourne, Blowingsup of and their blowingsdown, Duke Math. J. 52 (1985), 129148. MR 0791295 (86m:14026)
 8.
 R. Hartshorne, Algebraic geometry, Grad. Texts in Math., vol. 52, Springer, New York, 1977. MR 0463157 (57:3116)
 9.
 H.P. Hudson, Cremona transformations in plane and space, Cambridge University Press, 1927.
 10.
 M. Lahyane, Irreducibility of the classes on smooth rational surfaces, Preprint IC2001098P of The Abdus Salam International Centre for Theoretical Physics (2001).
 11.
 E. Looijenga, Rational surfaces with an anticanonical cycle, Ann. of Math. 114 (1981), 267322. MR 0632841 (83j:14030)
 12.
 Y. I. Manin, Cubic forms, NorthHolland Math. Library, vol. 4, NorthHolland, Amsterdam, 1986. MR 0833513 (87d:11037)
 13.
 M. Nagata, On rational surfaces II, Memoirs of the College of Science, University of Kyoto, Series A 33 (1960), no. 2, 271293. MR 0126444 (23:A3740)
 14.
 I. R. Shafarevich, Algebraic surfaces, Proceedings of the Steklov Institute of Mathematics, vol. 75, American Mathematical Society, 1967.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
14J26,
14E05,
14E07
Retrieve articles in all journals
with MSC (2000):
14J26,
14E05,
14E07
Additional Information
Maria AlberichCarramiñana
Affiliation:
Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028Barcelona, Spain
Email:
maria.alberich@upc.edu
DOI:
http://dx.doi.org/10.1090/S0002994704035056
PII:
S 00029947(04)035056
Received by editor(s):
April 11, 2003
Received by editor(s) in revised form:
August 22, 2003
Published electronically:
December 10, 2004
Additional Notes:
The author completed this work as a researcher of the Programa Ramón y Cajal of the Ministerio de Ciencia y Tecnología, and was also supported in part by CAICYT BFM2002012040, Generalitat de Catalunya 2000SGR00028 and EAGER, European Union contract HPRNCT200000099
Article copyright:
© Copyright 2004 American Mathematical Society
