Cut numbers of -manifolds

Author:
Adam S. Sikora

Journal:
Trans. Amer. Math. Soc. **357** (2005), 2007-2020

MSC (2000):
Primary 57M05, 57M27, 20F34, 11E76

Published electronically:
October 7, 2004

MathSciNet review:
2115088

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the relations between the cut number, and the first Betti number, of -manifolds We prove that the cut number of a ``generic'' -manifold is at most This is a rather unexpected result since specific examples of -manifolds with large and are hard to construct. We also prove that for any complex semisimple Lie algebra there exists a -manifold with and Such manifolds can be explicitly constructed.

**[Bre]**G. E. Bredon,*Topology and Geometry,*Graduate Texts in Mathematics, Springer-Verlag, 1995.**[Bro]**Kenneth S. Brown,*Cohomology of groups*, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR**672956****[CLO]**David Cox, John Little, and Donal O’Shea,*Ideals, varieties, and algorithms*, 2nd ed., Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1997. An introduction to computational algebraic geometry and commutative algebra. MR**1417938****[CM]**Tim D. Cochran and Paul Melvin,*Quantum cyclotomic orders of 3-manifolds*, Topology**40**(2001), no. 1, 95–125. MR**1791269**, 10.1016/S0040-9383(99)00056-7**[Dw]**William G. Dwyer,*Homology, Massey products and maps between groups*, J. Pure Appl. Algebra**6**(1975), no. 2, 177–190. MR**0385851****[Fe]**Roger A. Fenn,*Techniques of geometric topology*, London Mathematical Society Lecture Note Series, vol. 57, Cambridge University Press, Cambridge, 1983. MR**787801****[Gi]**P. Gilmer,*Integrality for TQFTs,*preprint, www.arxiv.org/abs/math.QA/0105059, to appear in Duke Math. Journal.**[Gu]**G. B. Gurevich,*Foundations of the theory of algebraic invariants*, Translated by J. R. M. Radok and A. J. M. Spencer, P. Noordhoff Ltd., Groningen, 1964. MR**0183733****[Ha]**Robin Hartshorne,*Algebraic geometry*, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR**0463157****[Har]**Shelly L. Harvey,*On the cut number of a 3-manifold*, Geom. Topol.**6**(2002), 409–424 (electronic). MR**1928841**, 10.2140/gt.2002.6.409**[He]**John Hempel,*3-Manifolds*, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. Ann. of Math. Studies, No. 86. MR**0415619****[Hu]**James E. Humphreys,*Introduction to Lie algebras and representation theory*, Springer-Verlag, New York-Berlin, 1972. Graduate Texts in Mathematics, Vol. 9. MR**0323842****[LR]**Christopher J. Leininger and Alan W. Reid,*The co-rank conjecture for 3-manifold groups*, Algebr. Geom. Topol.**2**(2002), 37–50 (electronic). MR**1885215**, 10.2140/agt.2002.2.37**[MKS]**Wilhelm Magnus, Abraham Karrass, and Donald Solitar,*Combinatorial group theory*, Second revised edition, Dover Publications, Inc., New York, 1976. Presentations of groups in terms of generators and relations. MR**0422434****[Ra]**A. A. Razborov,*Systems of equations in a free group*, Izv. Akad. Nauk SSSR Ser. Mat.**48**(1984), no. 4, 779–832 (Russian). MR**755958****[Sa]**Hans Samelson,*Notes on Lie algebras*, Van Nostrand Reinhold Mathematical Studies, No. 23, Van Nostrand Reinhold Co., New York- London-Melbourne, 1969. MR**0254112****[St]**John R. Stallings,*Problems about free quotients of groups*, Geometric group theory (Columbus, OH, 1992) Ohio State Univ. Math. Res. Inst. Publ., vol. 3, de Gruyter, Berlin, 1995, pp. 165–182. MR**1355111****[Su]**Dennis Sullivan,*On the intersection ring of compact three manifolds*, Topology**14**(1975), no. 3, 275–277. MR**0383415****[T1]**V. Turaev,*Milnor invariants and Massey products,*J. Soviet Math.**12**(1979), 128-137.**[T2]**V. G. Turaev,*Cohomology rings, linking coefficient forms and invariants of spin structures in three-dimensional manifolds*, Mat. Sb. (N.S.)**120(162)**(1983), no. 1, 68–83, 143 (Russian). MR**687337****[vW]**B. L. van der Waerden,*Modern Algebra,*Frederick Ungar Pub. Co., vol II, 1950.**[VE]**È. B. Vinberg and A. G. Èlašvili,*A classification of the three-vectors of nine-dimensional space*, Trudy Sem. Vektor. Tenzor. Anal.**18**(1978), 197–233 (Russian). MR**504529****[We]**Charles A. Weibel,*An introduction to homological algebra*, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR**1269324**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
57M05,
57M27,
20F34,
11E76

Retrieve articles in all journals with MSC (2000): 57M05, 57M27, 20F34, 11E76

Additional Information

**Adam S. Sikora**

Affiliation:
Department of Mathematics, 244 Mathematics Building, SUNY at Buffalo, Buffalo, New York 14260

Email:
asikora@buffalo.edu

DOI:
http://dx.doi.org/10.1090/S0002-9947-04-03581-0

Keywords:
Cut number,
3-manifold,
corank,
skew-symmetric form,
cohomology ring

Received by editor(s):
October 28, 2002

Received by editor(s) in revised form:
December 2, 2003

Published electronically:
October 7, 2004

Article copyright:
© Copyright 2004
American Mathematical Society