Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Cut numbers of $3$-manifolds

Author: Adam S. Sikora
Journal: Trans. Amer. Math. Soc. 357 (2005), 2007-2020
MSC (2000): Primary 57M05, 57M27, 20F34, 11E76
Published electronically: October 7, 2004
MathSciNet review: 2115088
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the relations between the cut number, $c(M),$ and the first Betti number, $b_1(M),$ of $3$-manifolds $M.$ We prove that the cut number of a ``generic'' $3$-manifold $M$ is at most $2.$ This is a rather unexpected result since specific examples of $3$-manifolds with large $b_1(M)$ and $c(M)\leq 2$ are hard to construct. We also prove that for any complex semisimple Lie algebra $\mathfrak g$ there exists a $3$-manifold $M$ with $b_1(M)=dim\, \mathfrak g$ and $c(M)\leq rank\, \mathfrak g.$ Such manifolds can be explicitly constructed.

References [Enhancements On Off] (What's this?)

  • [Bre] G. E. Bredon, Topology and Geometry, Graduate Texts in Mathematics, Springer-Verlag, 1995.
  • [Bro] K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics, Springer-Verlag, 1982. MR 83k:20002
  • [CLO] D. Cox, J. Little, D. O'Shea, Ideals, Varieties, and Algorithms, An Introduction to Computational Algebraic Geometry and Commutative Algebra, 2nd edition, Springer, 1997. MR 97h:13024
  • [CM] T. D. Cochran, P. Melvin, Quantum cyclotomic orders of 3-manifolds, Topology 40 (2001), no. 1, 95-125. MR 2002f:57022
  • [Dw] W. G. Dwyer, Homology, Massey products and maps between groups, J. Pure Appl. Alg 6 (1975), 177-190. MR 52:6710
  • [Fe] R. A. Fenn, Techniques of Geometric Topology, Cambridge Univ. Press, 1983. MR 87a:57002
  • [Gi] P. Gilmer, Integrality for TQFTs, preprint,, to appear in Duke Math. Journal.
  • [Gu] G. B. Gurevich, Foundations of the theory of algebraic invariants, P. Noordhoff Ltd - Groningen, The Netherlands, 1964. MR 32:1211
  • [Ha] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Springer-Verlag, 1977. MR 57:3116
  • [Har] S. Harvey, On the Cut Number of a $3$-manifold, Geom. Topol. 6 (2002) 409-424. MR 2003g:57017
  • [He] J. Hempel, $3$-manifolds, Annals of Mathematical Studies 86, Princeton Univ. Press, 1976. MR 54:3702
  • [Hu] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, Springer-Verlag, 1972. MR 48:2197
  • [LR] C. J. Leininger, A. W. Reid, The co-rank conjecture for $3$-manifold groups, Algebr. Geom. Topol. 2 (2002), 949-1000. MR 2002m:57019
  • [MKS] W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory, Dover Publications, Inc. 1976. MR 54:10423
  • [Ra] A. A. Razborov, On systems of equations in a free group, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), no. 4, 779-832. English translation: Math. USSR Izvestiya 25 (1985), no. 1, 115-162. MR 86c:20033
  • [Sa] H. Samelson, Notes on Lie Algebras, Van Nostrand Reinhold Co., 1969. MR 40:7322
  • [St] J. R. Stallings, Problems about free quotients of groups, Geometric group theory (Columbus, OH, 1992), 165-182, Ohio State Univ. Math. Res. Inst. Publ. 3, de Gruyter, Berlin, 1995. MR 97b:20028
  • [Su] D. Sullivan, On the intersection ring of compact three manifolds, Topology 14 (1975), 275-277. MR 52:4296
  • [T1] V. Turaev, Milnor invariants and Massey products, J. Soviet Math. 12 (1979), 128-137.
  • [T2] V. Turaev, Cohomology rings, linking forms and invariants of spin structures of three-dimensional manifolds, Mat. Sb. (N.S.) 120 (162) (1983), no. 1, 68-83, 143. English translation from: Math. USSR Sbornik 48 no 1 (1984), 65-79. MR 84g:57009
  • [vW] B. L. van der Waerden, Modern Algebra, Frederick Ungar Pub. Co., vol II, 1950.
  • [VE] E. B. Vinberg, A. G. Èlashvili, Classification of Trivectors of a $9$-Dimensional Space, Trudy Sem. Vector. Tenzor. Anal. 18 (1978), 197-233. English translation: Sel. Math. Sov. 7 No 1 (1988) 63-98. MR 80b:15039
  • [We] C. A. Weibel, An Introduction to Homological Algebra, Cambridge Univ. Press, 1994. MR 95f:18001

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 57M05, 57M27, 20F34, 11E76

Retrieve articles in all journals with MSC (2000): 57M05, 57M27, 20F34, 11E76

Additional Information

Adam S. Sikora
Affiliation: Department of Mathematics, 244 Mathematics Building, SUNY at Buffalo, Buffalo, New York 14260

Keywords: Cut number, 3-manifold, corank, skew-symmetric form, cohomology ring
Received by editor(s): October 28, 2002
Received by editor(s) in revised form: December 2, 2003
Published electronically: October 7, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society