
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 357, Number 5, Pages 2081–2117
S 0002-9947(04)03604-9
Article electronically published on December 28, 2004

GENERALIZED SPHERICAL FUNCTIONS
ON REDUCTIVE p-ADIC GROUPS

JING-SONG HUANG AND MARKO TADIĆ

Abstract. Let G be the group of rational points of a connected reductive
p-adic group and let K be a maximal compact subgroup satisfying conditions
of Theorem 5 from Harish-Chandra (1970). Generalized spherical functions
on G are eigenfunctions for the action of the Bernstein center, which satisfy a
transformation property for the action of K. In this paper we show that spaces
of generalized spherical functions are finite dimensional. We compute dimen-
sions of spaces of generalized spherical functions on a Zariski open dense set of
infinitesimal characters. As a consequence, we get that on that Zariski open
dense set of infinitesimal characters, the dimension of the space of generalized
spherical functions is constant on each connected component of infinitesimal
characters. We also obtain the formula for the generalized spherical functions
by integrals of Eisenstein type. On the Zariski open dense set of infinitesimal
characters that we have mentioned above, these integrals then give the for-
mula for all the generalized spherical functions. At the end, let as mention
that among others we prove that there exists a Zariski open dense subset of
infinitesimal characters such that the category of smooth representations of G
with fixed infinitesimal character belonging to this subset is semi-simple.

1. Introduction

In the case of a real reductive group G with complexified Lie algebra g, zonal
spherical functions are defined as eigenfunctions for the action of the center Z(g) of
the universal enveloping algebra U(g) of g on the smooth functions on G which are
constant on double K-classes, where K denotes a maximal compact subgroup of G.
In this way, one deals with differential equations and eigenfunctions of differential
operators. Generalized spherical functions on real reductive groups are a natural
generalization of zonal spherical functions (see [HOW]).

In the representation theory of reductive p-adic groups the Bernstein center
([BD]) plays the role of the center of the universal enveloping algebra in the rep-
resentation theory of real reductive groups. The Bernstein center shows up in a
number of important problems, but its role in representation theory is far from
being well understood.
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The construction of the Bernstein center of a reductive p-adic group ([BD])
opened the possibility of also studying generalized spherical functions in the p-adic
case. In this paper we define and study basic properties of generalized spherical
functions in the case of a reductive p-adic group (they are defined as eigenfunctions
of the Bernstein center, which satisfy a transformation property for the action of a
maximal compact subgroup). This paper may be viewed as a contribution to the
further understanding of the Bernstein center.

Let G be the group of rational points of a connected reductive group defined over
a p-adic field F . Fix a minimal parabolic subgroup P∅ defined over F and let K be
a maximal compact subgroup of G satisfying G = P∅K. Let (τ1, Vτ1), (τ2, Vτ2) be
finite-dimensional representations of K. Denote

V = HomC(Vτ2 , Vτ1)

and
τ = (τ1, τ2).

Then generalized spherical functions of type τ (or τ -spherical eigenfunctions) are
mappings f : G → V which satisfy f(k1xk2) = τ1(k1)f(x)τ2(k2) for all k1, k2 ∈ K,
g ∈ G, and which are eigenfunctions for the action of the Bernstein center. If ω is the
corresponding infinitesimal character of the Bernstein center of G, then the space
of all generalized spherical functions of type τ corresponding to the infinitesimal
character ω will be denoted by

Eω(G, τ).
In this paper we first show that these spaces are finite dimensional (Corollary

5.5). We show how one can get all the generalized spherical functions from a single
admissible representation with contragredient infinitesimal character ω̃ (Proposi-
tions 5.4 and 6.1). After this, we show that on a Zariski open dense set of infin-
itesimal characters, one can choose the above representation to be irreducible (in
this case there exists exactly one such representation and it has a simple descrip-
tion). We also compute dimensions of spaces of generalized spherical functions for
infinitesimal characters in this Zariski open dense set (Theorem 6.4). If ω is an in-
finitesimal character of a parabolically induced representation IndGP (ρ), where ρ is
an irreducible cuspidal representation of Levi factor M of P , then the dimension of
the generalized spherical functions for ω in a Zariski open dense set of infinitesimal
characters is given by

dimC(Eω(G, τ)) = dimC(HomM∩K(τN∩K
1 , ρ̃)) dimC(HomM∩K(τN∩K

2 , ρ̃)),

where ρ̃ denotes the contragredient representation of ρ, N denotes the unipotent
radical of P and τN∩K

i denote the N∩K-invariants in τi for i = 1, 2. On this Zariski
open dense set of infinitesimal characters, the dimension of the space of generalized
functions is constant on each connected component of infinitesimal characters.

We also obtain the formula for the generalized spherical functions in terms of in-
tegrals of Eisenstein type. On the Zariski open dense set of infinitesimal characters
that we mentioned above, these integrals then give the formula for all the gener-
alized spherical functions. Further, we prove that for a Zariski open dense subset
of infinitesimal characters, the category of smooth representations with fixed infin-
itesimal character belonging to this subset is semi-simple.

This paper is the p-adic analogue of a part of the basic results for real reduc-
tive groups obtained in [HOW]. It is in tune with what Harish-Chandra called the
Lefschetz principal, which says that whatever is true for real reductive groups is
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also true for p-adic groups. There are many not so surprising similarities between
our proofs for the p-adic case and that for the real case in [HOW] (but there are a
number of differences). The Hecke algebra H(G) of compactly supported smooth
functions on a p-adic group often plays a role similar to that of the universal en-
veloping algebra U(g) of a real group. The Bernstein center Z(G) ∼= EndG×G(H(G))
plays the same role as the center Z(g) of U(g) in the case of real groups. The main
tools that we use here are the techniques of the Bernstein center ([BD] and [BDK]).

At the end of this Introduction we shall give a brief account of the paper. In
the second section we introduce notations regarding actions of the group G on
spaces of functions on G. The third section recalls the definition of the Bernstein
center. We prove also here some simple facts about actions of the Bernstein center
needed in the sequel. Generalized spherical functions are defined in the fourth
section. The fifth section starts with the study of spherical functions and their
dimensions. In this section we prove that spaces of generalized spherical functions
are finite dimensional. In the sixth section we prove the formula for dimension
of spaces of generalized spherical functions for infinitesimal characters in a Zariski
open dense set of infinitesimal characters. The formula for the generalized spherical
functions by integrals of Eisenstein type is obtained in the seventh section. In the
last section we prove that for a Zariski open dense subset of infinitesimal characters,
the category of smooth representations with fixed infinitesimal character belonging
to this subset is semi-simple.

2. Actions on functions

In this section we shall denote by G a locally compact totally disconnected
group. Let V be an n-dimensional complex vector space. The dual space of V will
be denoted by V ′. We shall fix a basis e1, e2, . . . , en of V . Let e′1, e

′
2, . . . , e

′
n denote

the dual basis in V ′.
The space of all continuous (resp. locally constant) functions from G into V

will be denoted by C(G, V ) (resp C∞(G, V )). The space C(G,C) will be simply
denoted by C(G). We shall consider left and right actions L and R of G on C(G, V )
(here (Lxϕ)(g) = ϕ(x−1g) and (Rxϕ)(g) = ϕ(gx)). The smooth part of this G ×
G-representation will be denoted by C(G, V )(s,s). This space consists of all the
functions ϕ : G→ V for which there exists an open compact subgroup H of G such
that ϕ is constant on each double H-class.

For a linear operator A : W1 → W2 between (complex) vector spaces, we shall
denote by ΛA : C(G,W1) → C(G,W2) the linear operator defined by (ΛA(ϕ))(g) =
A(ϕ(g)) (i.e. ΛA(ϕ) = A ◦ϕ). Then ΛA intertwines the left actions L on C(G,W1)
and C(G,W2), as well as the right action R (for example, (Lx(ΛA(ϕ)))(g) =
(ΛA(ϕ))(x−1g) = A(ϕ(x−1g)) = A((Lxϕ)(g)) = (ΛA(Lxϕ))(g)).

The following two simple particular cases of linear operators will be important
for us. Let v′ ∈ V ′. Then

(2-1) Λv′ : C(G, V ) → C(G), ϕ �→ v′ ◦ ϕ.

Further, for v ∈ V consider the mapping v# : C → V, c �→ cv. Then

(2-2) Λv# : C(G) → C(G, V ), f �→ (g �→ f(g)v).
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The bilinear mapping (f, v) �→ (g �→ f(g)v), C(G) × V → C(G, V ) induces
a natural isomorphism

I⊗ : C(G) ⊗ V → C(G, V ), I⊗(
∑

fi ⊗ vi)(g) =
∑

fi(g)vi,

i.e.
I⊗(
∑

fi ⊗ vi) =
∑

Λv#i (fi).

Obviously,

(2-3) ϕ = I⊗(
n∑
i=1

e′i ◦ ϕ⊗ ei) = I⊗(
n∑
i=1

Λe′i(ϕ) ⊗ ei) =
n∑
i=1

Λe#i (Λe′i(ϕ)).

We shall consider the trivial action of G on V . Then G acts on C(G) ⊗ V in two
natural ways, one coming from the left and the other from the right action on C(G).
Then I⊗ is an intertwining for both actions. Using I⊗, we shall identify C(G) ⊗ V
with C(G, V ).

For a smooth representation (π,X) of G the contragredient representation is
denoted by (π̃, X̃).

Let us now recall claim (2) from Lemma I.6.1 of [W]:

2.1. Lemma. For f ∈ C(G)(s,s) the following conditions are equivalent:
(1) The subrepresentation generated by f with respect to the right action of G

is admissible.
(2) The subrepresentation generated by f with respect to the left action of G is

admissible.
This is equivalent to the fact that there exists an admissible representation (π,X)
of G, xi ∈ X and x̃i ∈ X̃, i = 1, . . . , k, such that f(g) =

∑k
i=1 x̃i(π(g)xi) for g ∈ G

(i.e. f is a sum of matrix coefficients of an admissible representation).

The subspace generated by all the matrix coefficients

g �→ 〈π(g−1)v, ṽ〉
of all admissible representations (π,X) of G is denoted by A(G). Note that (1) and
(2) characterize A(G) in different ways.

Denote by A(G, V ) the space of all ϕ ∈ C(G, V )(s,s) such that ϕ generates an
admissible representation for the left action. Obviously, by Lemma 2.1 A(G)⊗V ⊆
A(G, V ) since Λv# is an intertwining. From the other side, by Lemma 2.1 we know
that Λv′(ϕ) ∈ A(G) if ϕ ∈ A(G, V ), since Λv′ intertwines (left) representations.
Thus

A(G) ⊗ V = A(G, V ).

In the same way we could get that A(G, V ) is the set of all ϕ ∈ C(G, V )(s,s)

such that ϕ generates an admissible representation for the right action. Obviously,
A(G) ⊗ V and A(G, V ) are invariant for both actions of G (and isomorphic as
G×G-representations).

For an admissible representation (π,X) of G we shall denote by

A(π)

the vector subspace spanned by all matrix coefficients of π. Then A(π) is invariant
for the left and the right action of G.
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Let (π,X) be a smooth representation of G and let Y be a complex vector space.
Then we consider an action L on HomC(X,Y ) defined by

(L(g)A)(x) = A(π(g−1)x), g ∈ G,A ∈ HomC(X,Y ), x ∈ X.

The smooth part of this representation will be denoted by HomC(X,Y )(s). Note
that (L,HomC(X,C)(s)) = (π̃, X̃).

Sometimes we shall consider the action L of G on HomC(Y,X) given by

(LgA)(y) = π(g)A(y), g ∈ G,A ∈ HomC(Y,X), y ∈ Y.

Note that HomC(Y,X) is a smooth representation of G if Y is finite dimensional.

3. The Bernstein center Z(G) and infinitesimal characters

In the rest of the paper we shall denote by G the group of rational points of a
connected reductive group over a local field F . The modulus character of F will
be denoted by | |F . Let G0 be the group of all g ∈ G such that |χ(g)|F = 1 for all
rational characters χ of G. Then

G/G0

is a free Z-module of finite rank (the rank is equal to the dimension of the maximal
split torus in the center of G, i.e. to the split rank of G).

A character χ : G → C× is called unramified if it is trivial on G0. Obviously,
one can identify the group of all unramified characters of G with the group

Ψ(G) = HomZ(G/G0,C×).

Choose any basis b1, b2, . . . , bl of the free Z-module G/G0 (here l is the split rank of
G). Then χ �→ (χ(b1), χ(b2), . . . , χ(bl)) defines a group isomorphism of Ψ(G) onto
(C×)l. We supply Ψ(G) with the (unique) structure of a complex algebraic variety,
such that the above group isomorphism is also an isomorphism of algebraic varieties.
In this way Ψ(G) becomes a commutative complex algebraic group. Obviously, this
structure does not depend on the choice of the basis b1, b2, . . . , bl.

Let G̃ be the set of equivalence classes of all the irreducible smooth representa-
tions of G. Fix π ∈ G̃. Consider

χ �→ χπ, Ψ(G) → G̃.

Denote
Ψ(G)π = {χ ∈ Ψ(G);χπ ∼= π}.

Then Ψ(G)π is a finite group and χΨ(G)π �→ χπ is a one-to-one map from Ψ(G)/
Ψ(G)π onto Ψ(G)π ⊆ G̃.

Let Ω(G) be the set of all conjugacy classes of the pairs (M,ρ), where M is a
Levi subgroup of G and ρ is an irreducible cuspidal representation of M . The sets

Ω = {(M,χρ) : χ ∈ Ψ(M)} ⊆ Ω(G)

are called the connected components of Ω(G). A connected component will be
called cuspidal if it contains a cuspidal pair (M,ρ) such that M = G.

The mapping
χ �→ (M,χρ), Ψ(M) → Ω(G)

has finite fibers (usually we shall not make any distinction between a pair (M,ρ)
and its conjugacy class in Ω(G)). One defines the structure of a complex variety
on Ω in a natural way (a function f : Ω(G) → C is called regular if the restriction
of f to any connected component of Ω(G) is regular). The algebra of all regular
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functions on Ω(G) will be denoted by Z(G). For a subset X ⊆ Ω(G) we shall
say that it is Zariski open if X ∩ Ω is a Zariski open set in Ω for any connected
component Ω of Ω(G). Zariski open sets in Ω(G) define a topology on Ω(G), which
will be called the Zariski topology on Ω(G). Since connected components of Ω(G)
are irreducible varieties, an open subset O ⊆ Ω(G) is dense (with respect to the
Zariski topology) if and only if O ∩Ω �= ∅ for all connected components Ω of Ω(G).
Further, the intersection of a finite number of open dense subsets in Ω(G) is an
open dense subset of Ω(G).

Let π ∈ G̃. Then there is a parabolic subgroup P = MN of G and an irreducible
cuspidal representation ρ of M such that π is a subquotient of IndGP (ρ) (IndGP (ρ)
denotes the representation of G parabolically induced by ρ from P ; the induction
that we consider is normalized). The class of (ρ,M) in Ω(G) is uniquely determined
by π. In this way we get a canonical projection

(3-1) Π : π �→ (M,ρ), G̃→ Ω(G).

The canonical projection has finite fibers.
We fix a Haar measure dg on G. The convolution algebra of all compactly

supported locally constant functions on G will be denoted by H(G).
We shall recall some of the details of the Bernstein center in the rest of this

section (see [BD] for more details).
Denote by I the set of idempotents in H(G). Consider the order 
 on I: e
 f

if e ∈ f ∗H(G)∗f . For e ∈ I, denote by Z(e∗H(G)∗e) the center of the subalgebra
e ∗ H(G) ∗ e. One considers the family Z(e ∗ H(G) ∗ e), e ∈ I, as a projective
system, where the transition maps are given in the following way: if e 
 f , then
the transition map Z(f ∗ H(G) ∗ f) → Z(e ∗ H(G) ∗ e) sends z �→ e ∗ z. Denote
the projective limit by Z(G). It consists of all systems of elements h = (h(e))e∈I ,
h(e) ∈ Z(e ∗ H(G) ∗ e), which satisfy h(e) = h(f) ∗ e if e
 f .

Let (π,X) be a smooth representation of G, and let h ∈ Z(G), x ∈ X . Take
e ∈ I such that π(e)x = x. Define π(h)x to be π(h(e))x. Then π(h)x does not
depend on e as above. In this way we get a representation of the algebra Z(G)
on X . The actions of G and Z(G) commute, i.e. for each h ∈ Z(G) the mapping
π(h) : X → X is G-intertwining. Further, if A : X1 → X2 is an intertwining of two
smooth representations of G, then it is also an intertwining of the corresponding
representations of Z(G).

Suppose that (π,X) is irreducible. Then Z(G) acts on X by scalars which we
shall denote by χπ(h), h ∈ Z(G). The character

χπ

of Z(G) that we obtain in this way is called the infinitesimal character of π.
Note that for each h ∈ Z(G) we obtain a function h′ : G̃→ C, π �→ χπ(h). This

function factors through the canonical projection (3-1) Π : G̃→ Ω(G) by a function

ĥ : Ω(G) → C.

Then ĥ ∈ Z(G) and the mapping h �→ ĥ is an isomorphism of Z(G) onto Z(G).
Let (π,X) be a smooth representation of G. We define a representation π of

Z(G) on X by π(ĥ)x = π(h)x, h ∈ Z(G), x ∈ X . Clearly, Z(G) acts by scalars in
an irreducible representation π. The corresponding character of Z(G) will again
be denoted by χπ and again called the infinitesimal character of π. Obviously,
π(z)x = χπ(z)x = z(Π(π))x for z ∈ Z(G), x ∈ X . So, the infinitesimal character χπ
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is given by evaluation of functions of Z(G) in Π(π). Therefore, there is a bijection
between Ω(G) and the set of infinitesimal characters (which is given by evaluation
of functions at points). This is the reason why we shall sometimes talk of Ω(G) as
of the variety of infinitesimal characters of G.

We denote by Z0(G) the ideal of Z(G), consisting of all functions supported on
a finite number of components. An infinitesimal character ω can be interpreted as
an algebra homomorphism

ω : Z(G) → C,

which is non-trivial on Z0(G).
We shall say that a smooth representation (π,X) has an infinitesimal character

if there exists (M,ρ) such that π(z)x = z((M,ρ))x for z ∈ Z(G), x ∈ X .
For a function ϕ ∈ H(G), we denote by ϕ̌ a function defined by ϕ̌(g) = ϕ(g−1).

Recall that (ϕ1 ∗ ϕ2 )̌ = ϕ̌2 ∗ ϕ̌1.
Let h = (h(e))e∈I ∈ Z(G). Then h(e) ∈ Z(e ∗ H(G) ∗ e) and h(e) = h(f) ∗ e

if e 
 f . Obviously h(ě)̌ ∈ Z(e ∗ H(G) ∗ e). Note that e 
 f if and only if
ě 
 f̌ . Further, for e 
 f we have h(ě)̌ = e ∗ h(f̌ )̌ = h(f̌ )̌ ∗ e. Therefore,
(h(ě)̌ )e∈I ∈ Z(G). This element will be denoted by ȟ. Note that by definition

ȟ(e) = h(ě)̌ , h ∈ Z(G).

From this follows (ȟ)̌ = h for h ∈ Z(G).
Let (π,X) be a smooth representation of G and let Y be a finite-dimensional

complex vector space. Take A ∈ HomC(X,Y )(s), x ∈ X and ϕ ∈ H(G). Then

(L(ϕ)A)(x) =
(∫

G

ϕ(g)L(g)A dg

)
(x) =

∫
G

ϕ(g)(L(g)A)(x)dg

=
∫
G

ϕ(g)A(π(g−1)x)dg =
∫
G

A(ϕ(g)π(g−1)x)dg

= A

(∫
G

ϕ(g)π(g−1)xdg
)

= A

(∫
G

ϕ(g−1)π(g)xdg)
)

= A(π(ϕ̌)x.

It follows that we have the following lemma.

3.1. Lemma. For a smooth representation (π,X) of G, a finite-dimensional com-
plex vector space Y , A ∈ HomC(X,Y )(s), x ∈ X and h ∈ Z(G) we have

(L(h)A)(x) = A(π(ȟ)x).

In particular, (π̃(h)x̃)(x) = x̃(π(ȟ)x) for x ∈ X and x̃ ∈ X̃.

Proof. Choose an open compact subgroup H of K such that x and A are invariant
for the action of H . Denote by eH the characteristic function of H divided by the
Haar measure of H . Then eH ∈ I, ěH = eH , L(eH)A = A and π(eH)x = x. Now

(L(h)A)(x) = (L(h(eH))A)(x) = A(π(h(eH )̌ ))(x)

= A(π(h(ěH )̌ ))(x) = A(π(ȟ(eH))(x) = A(π(ȟ)(x).

This completes the proof. �

The above lemma implies that for an irreducible representation π we have

χπ(h) = χπ̃(ȟ), h ∈ Z(G).
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For z ∈ Z(G) we shall denote by z̃ ∈ Z(G) the function defined by

z̃((M,ρ)) = z((M, ρ̃)).

3.2. Lemma. (i) For h ∈ Z(G) we have

(ȟ)̂ = (ĥ)̃ .

(ii) Let (π,X) be a smooth representation of G and let Y be a finite-dimensional
complex vector space. Then for A ∈ HomC(X,Y )(s), x ∈ X and z ∈ Z(G) we have

(L(z)A)(x) = A(π(̃z)x).

Proof. (i) Let π ∈ G̃. Suppose that the image of π under the canonical projection
Π : G → Ω(G) is (M,ρ). Then π̃ goes to (M, ρ̃) under this projection. Using
Lemma 3.1 we get

(ȟ)̂ ((M,ρ)) = χπ((ȟ)̂ ) = χπ(ȟ) = χπ̃(h) = ĥ((M, ρ̃)) = (ĥ)̃ (M,ρ))

(recall that Z(G) ∼= Z(G) and that we consider infinitesimal characters as characters
of Z(G) and of Z(G), and denote them by the same symbol χπ; thus χ(h) = χπ(ĥ)
for h ∈ Z(G)). This ends the proof of (i).

(ii) Let z = ĥ. Now from (i) we get

(L(z)A)(x) = (L(h)A)(x) = A(π(ȟ)x) = A(π((ȟ)̂ )x) = A(π((ĥ)̃ )x) = A(π(̃z)x).

Thus (ii) also holds. �

Recall that we have considered the smooth representation g �→ Rg (resp. g �→
Lg) of G on C(G)(s,s) given by the right (resp. left) translations of G. Since
we denote by the same symbol the smooth representation and the corresponding
representation of the Bernstein center, the representation z �→ Rz (resp. z �→ Lz)
of the Bernstein center will denote the representation corresponding to the smooth
representation g �→ Rg (resp. g �→ Lg) of G on C(G)(s,s).

3.3. Lemma. Let z ∈ Z(G) and f ∈ C(G)(s,s). Then

Rzf = Lz̃f.

Proof. Note that for ψ ∈ H(G) and f ∈ C(G)(s,s) we have

Lψf = ψ ∗ f and Rψf = f ∗ ψ̌.
Let H be an open compact subgroup of G such that f is constant on double

H-classes. For ϕ ∈ Z(eH ∗ H(G) ∗ eH) we shall show that ϕ ∗ f = f ∗ ϕ.
Fix x ∈ G. Introduce the function fx on G:

fx(y) =

{
f(y) for y ∈ supp(ϕ)−1xH ∪Hx supp(ϕ)−1,

0 for y �∈ supp(ϕ)−1xH ∪Hx supp(ϕ)−1.

Obviously, fx ∈ eH ∗H(G)∗eH . Recall ϕ ∈ Z(eH ∗H(G)∗eH). Thus ϕ∗fx = fx∗ϕ
and we have

(ϕ ∗ f)(x) =
∫
G

ϕ(g)f(g−1x)dg =
∫
G

ϕ(g)fx(g−1x)dg = (ϕ ∗ fx)(x)

= (fx ∗ ϕ)(x) =
∫
G

fx(xg−1)ϕ(g)dg =
∫
G

f(xg−1)ϕ(g)dg = (f ∗ ϕ)(x).

Thus, ϕ ∗ f = f ∗ ϕ.
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Take h ∈ Z(G) such that z = ĥ. Now the above calculation implies

Lzf = Lĥf = Lhf = Lh(eH)f = h(eH) ∗ f = f ∗ h(eH) = f ∗ (h(eH )̌ )̌
= Rh(eH)ˇf = Rh(ěH )ˇf = Rȟ(eH )f = Rȟf = R(ȟ)ˆf = R(ĥ)˜f = Rz̃f.

�

3.4. Corollary. Let V be a finite-dimensional complex vector space. Then for
z ∈ Z(G) and ϕ ∈ C(G, V )(s,s) we have Rzϕ = Lz̃ϕ.

Proof. This follows from the fact that C(G, V )(s,s) and C(G)(s,s)⊗V are isomorphic
as G×G-representations. �

3.5. Remark. The above corollary implies that a subspace of C(G, V )(s,s) is invari-
ant under the action of Z(G) induced by the right translations if and only if it is
invariant under the action of Z(G) induced by the left translations.

Let us recall of the following result from [BD].

3.6. Theorem. Suppose that (π,X) is a finitely generated smooth representation
of G and H is an open compact subgroup of G. Then the space XH of all vectors
in X fixed by elements of H is invariant for the action of Z(G) and it is finitely
generated as Z0(G)-module.

The following immediate consequence of the above result will be useful for us.

3.7. Corollary. Each finitely generated smooth representation of G which has an
infinitesimal character is admissible. Moreover, it has finite length.

Let M < G be a standard Levi subgroup. Define the morphism

iGM : Ω(M) → Ω(G)

by (L, ρ) → (L, ρ). This is a finite morphism of algebraic varieties. The morphism
iGM is not in general an inclusion, since cuspidal pairs conjugate under G may be
non-conjugate under M . We follow [BDK] and call the corresponding map

i∗GM : Z(G) → Z(M)

the Harish-Chandra homomorphism. As for real groups, Z(M) is a finitely gener-
ated Z(G)-module.

Let P = MN be a parabolic subgroup of G. The functor of normalized parabolic
induction was denoted by IndGP . The normalized Jacquet functor going in the
opposite direction will be denoted by

rMG .

3.8. Proposition ([BD]). Suppose that π and σ are smooth representations of G
and M , respectively. Let z ∈ Z(G). Then

(1)

IndGP (σ(i∗GM (z))) = (IndGP (σ))(z),

(2)
rMG(π(z)) = (rMG(π))(i∗GM (z)).
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Recall that (M,ρ) ∈ Ω(G) is called regular (in G) if there does not exist w ∈
G\M which normalizes M such that ρ ∼= w.ρ, where w.ρ denotes the representation
m �→ ρ(w−1mw) of M .

Further, (M,ρ) ∈ Ω(G) will be called irreducible (inG) if IndGP (ρ) is irreducible.
We shall say that (M,ρ) ∈ Ω(G) is semi-simple in G if each admissible repre-

sentation (π,X) of G which has an infinitesimal character equal to z �→ z((M,ρ))
is semi-simple. Then also the corresponding infinitesimal character will be called
semi-simple.

An infinitesimal character of G will be called cuspidal if it corresponds to eval-
uation in an irreducible cuspidal representation of G (i.e. to some (G, ρ) ∈ Ω(G)).

3.9. Theorem. There exists an open dense subset Ω(G)′ of Ω(G) (with respect
to the Zariski topology) such that each (M,ρ) ∈ Ω(G)′ is irreducible, regular and
semi-simple.

We shall prove this claim in the eighth section (P. Schneider informed us that
the claim of the proposition follows from Proposition 3.14 of [BD], but this proof
seems to be quite a different type).

3.10. Remarks. (i) Note that Theorem 3.6 implies that each smooth representation
with semi-simple infinitesimal character is semi-simple (see the proof of Lemma
8.1).

(ii) Each element z which is in the center Z(G) of G, defines in a natural way
an element in Z(G) (one attaches (z ∗ e)e∈I ∈ Z(G) to z). This element will be
denoted by

zG.

One easily sees that for a smooth representation π we have

π(zG) = π(z).

If in a smooth representation π of G each element of the center Z(G) of G acts by
a scalar operator, then we shall say that π has central character. The corresponding
character of the center Z(G) will be denoted by

cπ.

Observe that
(zG)̂ : (M,ρ) �→ cIndG

P (ρ)(z) = cρ(z).
(iii) We can also view the element zG from the above remark in the following way.

By [BR], we can also define the Bernstein center as the center of the category of all
the smooth representations of G (i.e. the algebra of all the endomorphisms of the
identity functor on the category of all the smooth representations of G). Now each
z ∈ Z(G) defines in an obvious way such an endomorphism π �→ π(z) ∈ HomG(π, π)
of the category. This endomorphism corresponds to zG.

(iv) One can easily see that (ii) implies that each smooth representation of G
with an infinitesimal character also has a central character (from interpretation of
the Bernstein center in (iii) this is completely evident).

(v) Proposition 5.4.2 of [C] tells us that each admissible representation which is
cuspidal and which has central character is semi-simple.

(vi) Note that (iv) and (v) imply that each (M,ρ) ∈ Ω(G) with

M = G

is semi-simple.
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4. Definition of generalized spherical functions

We retain the notation that G is the group of rational points of a connected
reductive group over a local non-archimedean field F . We fix a minimal parabolic
subgroup P∅ of G. Subgroups of G containing P∅ will be called standard parabolic
subgroups. We fix a Levi factor M∅ of P∅. A Levi decomposition P = MN of a
standard parabolic subgroup P of G is called standard if M∅ ⊆M .

Denote byAM the maximal split torus in the center ofM . LetWM =NG(AM )/M
= NG(M)/ZG(AM ), where NG(AM ) (resp. ZG(AM )) denotes the normalizer (resp.
the centralizer) of AM in G. We shall denote WA∅ simply by W .

In the rest of this paper we shall fix a maximal compact subgroup K of G which
satisfies Theorem 5 of [HC1] (such a subgroup always exists). Recall that K is an
open subgroup of G. In the sequel, we shall assume that the Haar measure of G is
normalized on K.

Of the properties required to hold for K by this theorem, until Theorem 6.4 we
shall need only that the Iwasawa decomposition

(4-1) G = KP∅

holds (this is (i) of the theorem). For Theorem 6.4 we shall need the property that if
P = MN is a standard parabolic subgroup with the standard Levi decomposition,
then

(4-2) K ∩ P = (K ∩M)(K ∩N)

(this is (iv) of Theorem 5 from [HC1]). For the seventh section we shall also need
property (v) of of the same theorem (this implies that if we fix a standard Levi
subgroup M , the minimal parabolic subgroup P∅ ∩M in M , the Levi factor M∅ of
P∅ ∩M and the maximal compact subgroup K ∩M of M , then properties (4-1)
and (4-2) hold also in this setting for M).

Let τ1 and τ2 be continuous finite-dimensional representations of K on Vτ1 and
Vτ2 , respectively. Denote τ = (τ1, τ2) and let

V = HomC(Vτ2 , Vτ1).

We shall consider (τ, V ) as a double representation of K:

τ(k1, k2)ϕ = τ1(k1)ϕ τ2(k2)

for k1, k2 ∈ K (it means that (k1, k2) �→ τ(k1, k
−1
2 ) is a representation of K ×K).

Denote by C(G, τ) the space of all functions ϕ : G→ V satisfying

ϕ(k1gk2) = τ1(k1)ϕ(g)τ2(k2)

for all k1, k2 ∈ K, g ∈ G, i.e.

Lk−1
1
Rk2ϕ = Λτ1(k1)◦Λ◦τ2(k2)ϕ,

where τ1(k1)◦, ◦τ2(k2) : V → V are the mappings A �→ τ1(k1) ◦A and A ◦ τ2(k2),
respectively. Clearly,

C(G, τ) ⊆ C(G, V )(s,s).
Set

A(G, τ) = C(G, τ) ∩ A(G, V ).

4.1. Lemma. The space C(G, τ) is invariant under action of Z(G) with respect to
both left and right action.
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Proof. To see this, take ϕ ∈ C(G, V ), z ∈ Z(G) and k1, k2 ∈ K. Then using Lemma
3.3 we get

Lk−1
1
Rk2(Lzϕ) = Lz(Lk−1

1
Rk2(ϕ)) = Lz(Λτ1(k1)◦Λ◦τ2(k2)ϕ) = Λτ1(k1)◦Λ◦τ2(k2)(Lzϕ).

Thus, Lzϕ ∈ C(G, τ). In a similar way one shows that Rzϕ ∈ C(G, τ). �

Let ω be an infinitesimal character of G, i.e. a character of Z(G) which is non-
trivial on Z0(G). Denote

Eω(G, V ) = ELω (G, V ) = {ϕ ∈ C(G, V )(s,s);Lzϕ = ω(z)ϕ for z ∈ Z(G)},
ERω (G, V ) = {ϕ ∈ C(G, V )(s,s);Rzϕ = ω(z)ϕ for z ∈ Z(G)}.

4.2. Lemma. Each of the spaces Eω(G, V ) and ERω (G, V ) is invariant for the left
and the right action of G.

Proof. Let ϕ ∈ Eω(G, V ), g ∈ G and z ∈ Z(G). Then LzLgϕ = LgLzϕ = ω(z)Lgϕ
and LzRgϕ = RgLzϕ = ω(z)Rgϕ. Thus, Lgϕ,Rgϕ ∈ Eω(G, V ). In the same way
one shows the invariance of ERω (G, V ). �

4.3. Corollary. The spaces Eω(G, V ) and ERω (G, V ) are contained in A(G, V ).

Proof. By the above lemma, each ϕ in Eω(G, V ) (and in ERω (G, V )) generates a
(finitely generated) representation with an infinitesimal character. By Corollary
3.7, it is admissible. Thus, ϕ ∈ A(G, V ). �

Denote

Eω(G, τ) = Eω(G, V ) ∩ C(G, τ),

ERω (G, τ) = ERω (G, V ) ∩ C(G, τ).

These spaces are contained in A(G, V ) and C(G, τ). We shall denote

A(G, τ) = A(G, V ) ∩C(G, τ).

Then Eω(G, τ) and ERω (G, τ) are contained in A(G, τ).

5. The mapping ϕ �→ Tϕ

We set

C(G, V )(s)τ2 = {ϕ ∈ C(G, V )(s,s);ϕ(gk) = ϕ(g)τ2(k) for all g ∈ G, k ∈ K}.
The above condition describing a φ in C(G, V )(s)τ2 can be expressed as

Rkϕ = Λ◦τ2(k)ϕ,

for all k ∈ K. Clearly, C(G, V )(s)τ2 is invariant for the left action of the group and
the representation defined by this action is smooth. It follows that C(G, V )(s)τ2 is
invariant for the left action of Z(G)). Therefore, it is also invariant under the right
action of Z(G) by Remark 3.5 (one can also see this directly from the fact that
RkRzϕ = RzRkϕ = RzΛ◦τ2(k)ϕ = Λ◦τ2(k)Rzϕ for z ∈ Z(G), g ∈ G, k ∈ K and
ϕ ∈ C(G, V )(s)τ2 ).

We shall look at the Hecke algebra of all locally constant compactly supported
functions H(G) as a left H(G)-module in an obvious way. This is the same action
that we get if we look at the representation L of G on H(G) by left translations,
and integrate it to the representation of the Hecke algebra H(G).
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We consider H(K) ⊆ H(G) as a subalgebra. We shall consider H(G) as a right
H(K)-module in a natural way (the action of H(K) is given by the multiplication
from the right-hand side; recall that the multiplication in H(G) is the convolution).

We shall consider the action of G on H(G) ⊗H(K) Vτ1 which comes from the
action of G on the first factor.

5.1. Lemma. The representation of G on H(G) ⊗H(K) Vτ2 is finitely generated.

Proof. Let H be the kernel of τ2. Denote by eH the characteristic function of
H, divided by the measure of H . It is enough to show that eH ⊗ Vτ2 generates
H(G) ⊗H(K) Vτ2 as an H(G)-module. Note that

H(G) ⊗H(K) Vτ2 = {h⊗ v;h ∈ H(G), v ∈ Vτ2}
= {h⊗ eHv;h ∈ H(G), v ∈ Vτ2} = {h ∗ eH ⊗ v;h ∈ H(G), v ∈ Vτ2}.

This proves the lemma. �

5.2. Lemma. Let (π,X) be a smooth representation of G and let ω be an infini-
tesimal character.

(i) The subspace X[ω] spanned by

π(z)x − ω(z)x, z ∈ Z(G), x ∈ X,

is G-invariant. The subrepresentation on this space will be denoted by

(π[ω], X[ω]).

(ii) The space X/X[ω] will be denoted by X〈ω〉. The quotient representation on
this space will be denoted by

(π〈ω〉, X〈ω〉).

Then the representation (π〈ω〉, X〈ω〉) has an infinitesimal character, and the infin-
itesimal character is ω (i.e. (π〈ω〉, X〈ω〉) is an ω-representation). If π is finitely
generated, then (π〈ω〉, X〈ω〉) is admissible (ω-representation).

(iii) If Z(G) acts on a complex vector space W , we shall denote

Wω = {w ∈W ; z.w = ω(z)w for all z ∈ Z(G)}.
The space Xω is G-invariant and the subrepresentation on this subspace will be
denoted by

(πω, Xω).
(iv) Let U be a finite-dimensional complex vector space. There is a natural

representation L of G on HomC(X,U) (see section 2). The smooth part of this
representation will be denoted by HomC(X,U)(s).

If T : X → U is a linear operator which vanishes on X[ω̃], then T factors
through X〈ω̃〉 = X/X[ω̃] by the operator which will be denoted by T �. Then the
mapping T �→ T � defines an isomorphism of G-representations

HomC(X,U)(s)ω → HomC(X〈ω̃〉, U)(s).

Proof. The invariance in (i) and (iii) is clear.
To prove (ii), denote the quotient map by Φ. Then

π〈ω〉(z)Φ(x) − ω(z)Φ(x) = Φ(π(z)x) − ω(z)Φ(x) = Φ(π(z)x − ω(z)x) = 0.

The last claim of (ii) follows from Corollary 3.7.
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Now we shall prove (iv). Let T ∈ HomC(X,U)(s)ω . Then (L(z)T )(x) = ω(z)T (x).
Recall that L(z)T (x) = T (π(̃z)x) by Lemma 3.1. Therefore

T (π(̌z)x) = ω(z)T (x)(= ω̃(̌z)T (x))

for all z ∈ Z(G) and x ∈ X . Thus T vanishes on all π(z)x− ω̃(z)x. Therefore T in-
duces an operator in HomC(X/X[ω], U), which will be denoted by T �. The mapping
T �→ T �, from HomC(X,U)ω into HomC(X/X[ω̃], U), is obviously G-intertwining.
Therefore, T � is in the smooth part HomC(X/X[ω̃], U)(s) of HomC(X〈ω̃〉, U) =
HomC(X/X[ω̃], U).

From the other side, HomC(X/X[ω̃], U)∗ is a representation with an infinitesimal
character ω (we see it in the same way as above). There is natural embedding S �→
S� of the space HomC(X/X[ω̃], U)(s) into HomC(X,U)(s)ω (which is G-intertwining).
Obviously, the mappings T �→ T � and S �→ S# are inverses of each other. Therefore,
we can identify HomC(X,U)(s)ω with HomC(X/X[ω̃], U)(s) in this way. �

We now define an action L of G on HomC(H(G) ⊗H(K) Vτ2 , Vτ1)(s) in a natural
way:

(5-1) (L(g)A)(h⊗ v) = A(Lg−1h⊗ v)

(see section 2). Then for f ∈ H(G)

(L(f)A)(h⊗ v) = A(f̌ ∗ h⊗ v).

In this way we also have an action of Z(G) on HomC(H(G) ⊗H(K) Vτ2 , Vτ1)(s).

Proposition 5.3. (i) Let ϕ ∈ C(G, V )(s)τ2 . Then the formula∑
i

hi ⊗ vi �→
∑
i

((ȟi ∗ ϕ)(1))(vi) =
∑
i

((Lȟi
ϕ)(1))(vi)

defines a linear mapping

Tϕ : H(G) ⊗H(K) Vτ2 → Vτ1

(in particular, the above mapping is well defined).
(ii) The mapping

T : C(G, V )(s)τ2 → HomC(H(G) ⊗H(K) Vτ2 , Vτ1)
(s),

ϕ �→ Tϕ

is an injective G-intertwining.
(iii) We have

HomH(K)(H(G) ⊗H(K) Vτ2 , Vτ1) ⊆ HomC(H(G) ⊗H(K) Vτ2 , Vτ1)
(s).

Further, HomH(K)(H(G) ⊗H(K) Vτ2 , Vτ1) is invariant under the action of Z(G).
(iv) If ϕ ∈ C(G, τ), then Tϕ ∈ HomH(K)(H(G) ⊗H(K) Vτ2 , Vτ1).

Proof. (i) Let ϕ ∈ C(G, V )(s)τ2 . Define

T ′
ϕ : H(G) × Vτ2 → Vτ1 , (h, v) �→ ((ȟ ∗ ϕ)(1))(v) = ((Lȟϕ)(1))(v),
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where ȟ(x) = h(x−1) (recall (h1 ∗ h2)̌ = ȟ2 ∗ ȟ1). Now for b ∈ H(K)

T ′
ϕ(h ∗ b, v) = ((L(h∗b)ˇϕ)(1))(v) = ((Lb̌∗ȟϕ)(1))(v) = ((Lb̌(Lȟϕ))(1))(v)

=
∫
K

b(k)Lk(Lȟϕ)(1)v dk =
∫
K

b(k)(Lȟϕ)(k)v dk =
∫
K

b(k)(Lȟϕ)(1)τ2(k)v dk

= (Lȟϕ)(1)
∫
K

b(k)τ2(k)v dk = (Lȟϕ)(1)τ2(b)v = T ′
ϕ(h, τ2(b)v).

Therefore, T ′
ϕ can be factored through

Tϕ : H(G)⊗H(K)Vτ2 →Vτ1 ,
∑
i

hi⊗vi �→
∑
i

((ȟi∗ϕ)(1))(vi) =
∑
i

((Lȟi
ϕ)(1))(vi).

In this way we get that the mapping

T : C(G, V )(s)τ2 → HomC(H(G) ⊗H(K) Vτ2 , Vτ1), ϕ �→ Tϕ

is well defined. This mapping is obviously linear.
(ii) First we shall show that this mapping is injective. Suppose Tϕ = 0. Then

0 = Tϕ(h⊗ v) = ((Lȟϕ)(1))(v),

for all h ∈ H(G) and v ∈ Vτ2 . Thus

(Lhϕ)(1) = 0 for all h ∈ H(G).

Take h ∈ H(G) such that Lhϕ = ϕ. Then for x ∈ G

ϕ(x) = (Lhϕ)(x) =
(∫

G

h(g) (Lgϕ) dg
)

(x) =
∫
G

h(g)ϕ(g−1x)dg

=
∫
G

h(xg)ϕ(g−1)dg =
∫
G

(Lx−1h)(g)ϕ(g−1)dg = (LLx−1hϕ)(1).

This implies ϕ = 0. Thus, T is injective.
Now take ϕ ∈ C(G, V )(s)τ2 . Then for f ∈ H(G)

TLfϕ(h⊗ v) = Tf∗ϕ(h⊗ v) = (ȟ ∗ f ∗ ϕ)(1)v

= Tϕ(f̌ ∗ h⊗ v) = Tϕ(Lf̌h⊗ v) = (L(f)Tϕ)(h⊗ v).

This shows that ϕ �→ Tϕ is G-intertwining.
Since T is G-intertwining, the image of T is in the smooth part

HomC(H(G) ⊗H(K) Vτ2 , Vτ1)
(s)

of HomC(H(G) ⊗H(K) Vτ2 , Vτ1).
(iii) The inclusion in (iii) follows directly from the definition of

HomH(K)(H(G) ⊗H(K) Vτ2 , Vτ1).

Let B be a linear operator on Vτ1 . Then the operator

ΛB◦ : HomC(H(G) ⊗H(K) Vτ2 , Vτ1) → HomC(H(G) ⊗H(K) Vτ2 , Vτ1), A �→ BA

is G-intertwining since

(L(g)(ΛB◦A))(h⊗ v) = (ΛB◦A)(Lg−1h⊗ v) = B(A(Lg−1h⊗ v))

= B((L(g)A)(h ⊗ v)) = (ΛB◦(L(g)A))(h ⊗ v).
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We shall now show that L(z)A ∈ HomH(K)(H(G)⊗H(K)Vτ2 , Vτ1) if A is in the space
HomH(K)(H(G) ⊗H(K) Vτ2 , Vτ1) and z ∈ Z(G). To see this, take k ∈ K. First

(L(z)A)(Lkh⊗ v) = (L(k−1)(L(z)A))(h ⊗ v)

by the definition (5-1) of the action of K (and G). Recall that z �→ L(Z) is the
action of the Bernstein center corresponding to the representation g �→ L(g) of G
(defined by (5-1)). Therefore, these two actions commute (L(z)’s are intertwinings)
and we have L(k−1)(L(z)A) = L(z)L(k−1)A. Therefore

(L(z)A)(Lkh⊗ v) = (L(z)L(k−1)A)(h⊗ v)

= L(z)(L(k−1)A(h⊗ v)) = L(z)(A(Lkh⊗ v)) = L(z)(τ1(k)(A(h⊗ v)))

= L(z)(Λτ1(k)A)(h⊗ v) = Λτ1(k)L(z)A(h⊗ v) = τ1(k)((L(z)A)(h ⊗ v)).

This shows that HomH(K)(H(G)⊗H(K) Vτ2 , Vτ1) is invariant for the action of Z(G).
(iv) Let ϕ ∈ C(G, τ). For h ∈ H(G), v ∈ Vτ2 and k ∈ K we have

Tϕ(Lkh⊗ v) = (((Lkh)̌ ∗ ϕ)(1))v =
∫
G

Lkh(g)ϕ(g)vdg =
∫
G

h(k−1g)ϕ(g)vdg

=
∫
G

h(g)ϕ(kg)vdg = τ1(k)
∫
G

h(g)ϕ(g)vdg = τ1(k)(ȟ∗ϕ)(1)v = τ1(k)Tϕ(h⊗v).

This shows Tϕ ∈ HomH(K)(H(G) ⊗H(K) Vτ2 , Vτ1). �

5.4. Proposition. There exists a one-to-one linear mapping

Eω(G, τ) → HomH(K)((H(G) ⊗H(K) Vτ2)
〈ω̃〉, Vτ1).

Proof. Recall that for ϕ ∈ C(G, τ), by (iv) of Proposition 5.3 we have

Tϕ ∈ HomH(K)(H(G) ⊗H(K) Vτ2 , Vτ1).

Further, for ϕ ∈ Eω(G, τ) by (ii) of the same proposition, Tϕ needs to be in

(5-2) HomC(H(G) ⊗H(K) Vτ2 , Vτ1)
(s)
ω ∩ HomH(K)(H(G) ⊗H(K) Vτ2 , Vτ1)

= HomH(K)(H(G) ⊗H(K) Vτ2 , Vτ1)ω.

We also know that ϕ �→ Tϕ is a one-to-one mapping. Therefore, we have a one-to
one mapping from Eω(G, τ) into HomH(K)(H(G)⊗H(K) Vτ2 , Vτ1)ω . This one-to-one
mapping goes from Eω(G, τ) into

HomH(K)(H(G) ⊗H(K) Vτ2 , Vτ1)ω

= HomC(H(G) ⊗H(K) Vτ2 , Vτ1)
(s)
ω ∩ HomH(K)(H(G) ⊗H(K) Vτ2 , Vτ1)

∼= HomC((H(G) ⊗H(K) Vτ2)
〈ω̃〉, Vτ1)

(s) ∩ HomH(K)((H(G) ⊗H(K) Vτ2)
〈ω̃〉, Vτ1)

= HomH(K)((H(G) ⊗H(K) Vτ2)
〈ω̃〉, Vτ1).

This proves the proposition. �

5.5. Corollary. The spaces of generalized spherical functions Eω(G, τ) are finite
dimensional.

Proof. Note that (H(G)⊗H(K) Vτ2)〈ω̃〉 is an admissible representation by Corollary
3.7, Lemma 5.1 and Lemma 5.2. This and the above proposition imply the corollary.

�
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6. The mapping T �→ ϕT

For T ∈ HomC(H(G) ⊗H(K) Vτ2 , Vτ1)
(s) we define ϕT : G→ V by the formula

ϕT (g)(v) = T (Lg(eK0 ⊗ v)), v ∈ Vτ2 ,

where L denotes the natural representation of G on H(G)⊗V (the action is on the
first factor), and

K0 = Ker(τ1) ∩ Ker(τ2).

6.1. Proposition. (i) The mapping T �→ ϕT is a one-to-one G-intertwining from

HomC(H(G) ⊗H(K) Vτ2 , Vτ1)
(s) into C(G, V )(s)τ2 .

(ii) There exists a one-to-one G-intertwining from

HomC(H(G) ⊗H(K) Vτ2 , Vτ1)
(s)
ω

∼= HomC((H(G) ⊗H(K) Vτ2)
〈ω̃〉, Vτ1)

(s)

into
C(G, V )(s)τ2 ∩ Eω(G, V ).

(iii) If T ∈ HomH(K)(H(G) ⊗H(K) Vτ2 , Vτ1), then ϕT ∈ C(G, τ).
(iv) There exists a one-to-one linear mapping of

HomH(K)((H(G) ⊗H(K) Vτ2)
〈ω̃〉, Vτ1) into Eω(G, τ).

Proof. (i) For k ∈ K and ϕ ∈ HomC(H(G) ⊗H(K) Vτ2 , Vτ1)(s) we have

ϕT (gk)(v) = T (Lgk(eK0 ⊗ v)) = T (LgkeK0 ⊗ v)) = T (LgLkeK0 ⊗ v)

= T (Lg(LkeK0 ⊗ v)) = T (Lg(
1

µ(K0)
chkK0 ⊗ v))

= T (Lg(eK0 ⊗ τ2(
1

µ(K0)
chkK0)v)) = T (Lg(eK0 ⊗ τ2(k)v))ϕT (g)(τ2(k)v)

(we denoted in the above computation the characteristic function of a subset Y by
chY ). This implies that ϕT ∈ C(G, V )τ2 .

We shall now show that T �→ ϕT is a G-intertwining:

(LxϕT )(g)v = ϕT (x−1g)v = T (Lx−1g(eK0 ⊗ v)) = T ((Lx−1geK0) ⊗ v)

= T (Lx−1(LgeK0) ⊗ v) = L(x)T (Lg(eK0) ⊗ v))

= (L(x)T )(Lg(eK0) ⊗ v)) = ϕL(x)T (g)v.

Note that now we also get that ϕT ∈ C(G, V )(s)τ2 .
Now we shall prove that T �→ ϕT is injective. Suppose

T ∈ HomC(H(G) ⊗H(K) Vτ2 , Vτ1)
(s)

and ϕT (g)v = 0 for all g ∈ G and v ∈ Vτ2 . Then T (Lg(eK0⊗v)) = T (LgeK0⊗v) = 0.
Since the set of LgeK0 ⊗ v generate vector space H(G) ⊗H(K) Vτ2 , we have T = 0.

(ii) This follows directly from (i).
(iii) Suppose that ϕ ∈ HomH(K)(H(G)⊗H(K)Vτ2 , Vτ1). Then we have for k ∈ K:

ϕT (kg)(v) = T (Lkg(eK0 ⊗ v)) = τ1(k)T (Lg(eK0 ⊗ v)) = τ1(k)ϕT (g)v.

Thus, ϕT ∈ C(G, τ).
(iv) We get (iv) directly from (i) and (iii). �
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6.2. Remarks. (i) The study of generalized spherical functions in a natural way
reduces to the case of τ1 and τ2 irreducible representations of K. For a smooth
representation (π,X) of G, we shall denote by

X [τ1]

the τ1-isotipic subspace of X .
(ii) Note that

eK0⊗ : Vτ2 → H(G) ⊗H(K) Vτ2 ,

v �→ eK0 ⊗ v,

which shows up in the definition of T �→ ϕT on HomC(H(G)⊗H(K) Vτ2 , Vτ1)(s), is a
K-intertwining. Therefore, if τ2 is irreducible, then eK0 ⊗v ∈ (H(G)⊗H(K) Vτ2)[τ2]
for v ∈ Vτ2 .

(iii) If we consider the mapping that T �→ ϕT defines on

HomC((H(G) ⊗H(K) Vτ2)
〈ω̃〉, Vτ1)

(s)

(which is isomorphic to HomC(H(G) ⊗H(K) Vτ2 , Vτ1)
(s)
ω ), it is given by the formula

g �→ (
v �→ T (Lg(eK0 ⊗ v)) + (H(G) ⊗H(K) Vτ2)[ω̃]

)
.

Note again that
v �→ eK0 ⊗ v + (H(G) ⊗H(K) Vτ2)[ω̃]

is a K-intertwining of Vτ2 (now into (H(G) ⊗H(K) Vτ2)〈ω̃〉). This K-intertwining
will be denoted by

ēK0 ⊗ .

(iv) Let the infinitesimal character ω correspond to (M,ρ) and assume that τ2
is irreducible.

Now we shall show that τ2 is a K-type of IndGP (ρ̃) if and only if

(H(G) ⊗H(K) Vτ2)
〈ω̃〉 �= {0}.

Suppose first that τ2 is a K-type of IndGP (ρ̃). Then there exists a non-zero
K-intertwining µ : Vτ2 → IndGP (ρ̃). Consider the mapping

(f, v) �→ Rf (µ(v)), H(G) × Vτ2 → IndGP (ρ̃).

This is obviously a non-trivial bilinear mapping. Consider now for f ∈ H(G), h ∈
H(K) and v ∈ Vτ2

Rf∗h(µ(v)) = RfRh(µ(v)) = Rf (µ(τ2(h)v)).

This implies that (H(G) ⊗H(K) Vτ2)〈ω̃〉 �= {0}.
Suppose now that (H(G) ⊗H(K) Vτ2)〈ω̃〉 �= {0}. Then there exists a non-trivial

G-intertwining
I : H(G) ⊗H(K) Vτ2 → X,

where X is a (non-zero) subquotient of IndGP (ρ̃) (the restriction to X of the quotient
action of G on IndGP (ρ̃) will be denoted by RX). Since I �= 0, one sees directly that
I(eK0 ⊗ v) �= 0 for some v ∈ Vτ2 . Now consider the non-trivial linear mapping

IeK0
: v �→ I(eK0 ⊗ v), Vτ2 → X.
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Note that for h ∈ H(K) we have

IeK0
(τ2(h)v) = I(eK0 ⊗ τ2(h)v) = I(eK0 ∗ h⊗ v)

= I(h ∗ eK0 ⊗ v) = RXh I(eK0 ⊗ v) = RXh IeK0
(v)

(above we have used that eK0 ∗ h = h ∗ eK0 , which holds since K0 is a normal
subgroup of K). Thus, we have shown that τ2 is a K-type of IndGP (ρ̃).

(v) Observe that there exists an injectiveK-intertwining ofX into IndGP (ρ̃). From
this one can easily see that in (iv) we have proved for not necessarily irreducible τ2
that

(H(G) ⊗H(K) Vτ2)
〈ω̃〉 �= {0} ⇐⇒ HomK(Vτ2 , IndGP (ρ̃)) �= {0}.

Now we shall consider a slightly modified setting. Let (π,X) be a smooth repre-
sentation of G with infinitesimal character ω̃. Consider the natural representation
of G on HomC(X,Vτ1) (recall that HomC(X,Vτ1)(s) denotes the smooth part of it).
Fix α ∈ HomK(Vτ2 , X). For T ∈ HomC(X,Vτ1)(s) define ϕαT : G→ V by

ϕαT (g)v = T (π(g)(α(v))), v ∈ Vτ2 , g ∈ G.

Further, T �→ ϕαT is a linear mapping from HomC(X,Vτ1)(s) into C(G, V )τ2 . Since
it is a G-intertwining, the image is in C(G, V )(s)τ2 . Further, if T ∈ HomK(X,Vτ1),
then ϕαT ∈ C(G, τ). Thus, ϕαT ∈ Eω(G, V ) (since π has infinitesimal character ω̃).
In this way we obtain a linear mapping

ΦX : HomK(Vτ2 , X) ⊗ HomK(X,Vτ1) → Eω(G, τ),(6-1)
α⊗ T �→ ϕαT .

6.3. Lemma. (i) If X = X1⊕X2 is a sum of G-subrepresentations, then Im(ΦX1 )+
Im(ΦX2) = Im(ΦX).

(ii) If π is irreducible, then ΦX is injective.
(iii) If (π′, X ′) is a smooth representation of G isomorphic to (π,X), then

Im(ΦX) = Im(ΦX′).

Proof. (i) One gets Im(ΦXi) ⊆ Im(ΦX) directly (if ϕαT ∈ Im(ΦXi ), then extend the
codomain of α and the domain of T in the obvious way).

Denote the action of G in Xi by πi. Let ϕαT ∈ Im(ΦX). Let αi be the composition

Vτ2
α→ X1 ⊕X2

pri→ Xi and Ti the composition Xi ↪→ X1 ⊕X2
T→ X1 ⊕X2

pri→ Xi.
Now

ϕαT (g)v = T (π(g)(α(v))) = T (π(g)(α1(v) + α2(v)))

= T (π1(g)(α1(v)) + π2(g)(α2(v)))

= T1(π1(g)(α1(v))) + T2(π2(g)(α2(v))) = ϕα1
T1

(g)v + ϕα2
T2

(g)v.

This completes the proof of (i).
(ii) Suppose that ψ ∈ HomK(Vτ2 , X)⊗HomK(X,Vτ1) is a non-zero element which

is in the kernel of ΦX . Write ψ =
∑n

i=1 αi ⊗ Ti with n ≥ 1 as small as possible.
Then the αi are linearly independent, and also the Ti are linearly independent.
Now

n∑
i=1

ϕαi

Ti
(g)v =

n∑
i=1

Ti(π(g)(αi(v))) = 0, ∀g ∈ G, v ∈ Vτ2 .
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Writing gg1 in the above relation instead of g, multiplying the relation by f(g1)
and integrating over G the expression that we obtain in this way, we get

n∑
i=1

Ti(π(g)π(f)(αi(v))) = 0, for all g ∈ G, f ∈ H(G), v ∈ Vτ2 .

Suppose now that τ2 is irreducible. Observe that if v �= 0, then the irreducibility
of τ2 implies that all αi(v) �= 0. Denote by l the length of the representation∑n
i=1 Im(αi). Since τ2 is irreducible,

l ≤ n.

From the other side, Schur’s lemma implies

dimC HomK(Vτ2 ,
l∑
i=1

Im(αi)) ≤ l.

We can view α1, α2, . . . , αn as elements of HomK(Vτ2 ,
∑l

i=1 Im(αi)). Since they are
linearly independent,

n ≤ dimC Hom(Vτ2 ,
l∑
i=1

Im(αi)).

Now these three inequalities imply l = n. Thus
∑n
i=1 Im(αi) =

⊕n
i=1 Im(αi). Now

this together with the fact that αi(v) ∈ Im(αi) and αi(v) �= 0 for v �= 0, imply that
α1(v), α2(v), . . . , αn(v) are linearly independent.

Fix v �= 0. Choose f such that π(f)(α1(v)) �= 0 and π(f)(αi(v)) = 0 for i > 1.
Then T1(π(g)π(f)(α1(v))) = 0 for all g ∈ G. The irreducibility of π implies T1 = 0.
This contradiction completes the proof of (ii) in the lemma if τ2 is irreducible.

We shall now consider τ2 which is not irreducible. Then we can write

τ2 = τ
(1)
2 ⊕ τ

(2)
2 ,

where both τ (i)
2 are non-trivial. Now obviously

V = HomC(Vτ2 , Vτ1) = HomC(V
τ
(1)
2

⊕ V
τ
(2)
2
, Vτ1)

∼= HomC(V
τ
(1)
2
, Vτ1) ⊕ HomC(V

τ
(2)
2
, Vτ1) = V (1) ⊕ V (2),

where V (1) = HomC(V
τ
(1)
2
, Vτ1) and V (2) = HomC(V

τ
(2)
2
, Vτ1). Let p(i) : Vτ2 → V

(i)
τ2

be the corresponding projections (they are K-intertwinings). We identify V (1) and
V (2) with subspaces of V in a natural way, by identifications ι(i) : V (i) → V ,
x �→ x ◦ p(i), which obviously satisfy

ι(i)(τ1(k1)xτ
(i)
2 (k2)) = τ1(k1)ι(i)(x)τ2(k2)

for k1, k2 ∈ K, x ∈ V (i).
Denote τ (1) = (τ1, τ

(1)
2 ) and τ (2) = (τ1, τ

(2)
2 ). Composition mapping f �→ ι(i) ◦ f

(note ι(i) ◦ f : g �→ f(g) ◦ p(i)) enables us also to identify Eω(G, τ (i)) with a sub-
space of Eω(G, τ) (observe that composing by ι(i) is a G-intertwining, therefore it
will preserve infinitesimal character, and further since ι(i) has the above transfor-
mation property, the composing with ι(i) carries the transformation property with
respect to τ (i) into the transformation property with respect to τ ; this explains why
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Eω(G, τ (i)) goes into Eω(G, τ)). Observe that Eω(G, τ (1)) ∩ Eω(G, τ (2)) = {0} since
f ∈ Eω(G, τ (1)) ∩ Eω(G, τ (2)) takes values in V (1) ∩ V (2) = {0}.

Let Φ(i)
X be the mapping defined by the formula (6-1) when one takes τ (i) instead

of τ . Im Φ(1) ∩ Im Φ(2) = {0} follows from the fact that Eω(G, τ (1)) ∩ Eω(G, τ (2)) =
{0}. Thus

Im Φ(1)
X + Im Φ(2)

X = Im Φ(1)
X ⊕ Im Φ(2)

X .

From the other side

HomK(Vτ2 , X) ⊗ HomK(X,Vτ1) = HomK(V (1)
τ2 ⊕ V (2)

τ2 , X) ⊗ HomK(X,Vτ1)

=
(
HomK(V (1)

τ2 , X) ⊗ HomK(X,Vτ1)
)
⊕
(
HomK(V (2)

τ2 , X) ⊗ HomK(X,Vτ1)
)

(here we have identified HomK(V (i)
τ2 , X) with the subspace of HomK(Vτ2 , X) using

α �→ α ◦ p(i)). This implies Im ΦX = Im Φ(1)
X + Im Φ(2)

X . Thus

Im ΦX = Im Φ(1)
X ⊕ Im Φ(2)

X .

Now we can prove (ii) by induction with respect to the length of τ2. If τ2 is of
length one (i.e. if τ2 is irreducible), then we have seen that (ii) holds. If τ2 is not
irreducible, we can decompose it into a direct sum of two representations of smaller
lengths, and then apply the above relation for Im ΦX to conclude injectivity from
the inductive assumption.

(iii) Let ζ : X → X ′ be an isomorphism of representations of G. Observe
that α �→ ζ ◦ α is a vector space isomorphism HomK(Vτ2 , X) → HomK(Vτ2 , X ′),
and further T �→ T ◦ ζ−1 is also a vector space isomorphism HomK(X,Vτ1) →
HomK(X ′, Vτ1). Therefore

α⊗ T �→ ζ ◦ α⊗ T ◦ ζ−1

extends to an isomorphism

HomK(Vτ2 , X) ⊗ HomK(X,Vτ1) → HomK(Vτ2 , X
′) ⊗ HomK(X ′, Vτ1).

Recall that (
ΦX(α⊗ T )

)
(g)v = ϕαT (g)v = T (π(g)(α(v))).

From the other side we have(
ΦX′(ζ ◦ α⊗ T ◦ ζ−1)

)
(g)v = ϕζ◦αT◦ζ−1(g)v = (T ◦ ζ−1)(π′(g)(ζ ◦ α(v)))

= (T ◦ ζ−1)(ζπ(g)(α(v))) = T (π(g)(α(v))).

Thus
ΦX(α⊗ T ) = ΦX′(ζ ◦ α⊗ T ◦ ζ−1),

which implies Im ΦX = Im ΦX′ . The proof is now complete �
Let ω be the infinitesimal character corresponding to (M,ρ) ∈ Ω(G), where

M is the standard Levi subgroup of a standard parabolic subgroup P . In the
following theorem we shall consider mapping (6-1) in the case whenX is the induced
representation HomK(τi, IndGP (ρ̃)). This is the reason that we shall need to better
understand HomK(τi, IndGP (ρ̃)).

First Frobenius reciprocity implies

(6-2) HomK(τi, IndGP (ρ̃)) ∼= HomK(τi, IndKP∩K(ρ̃)) ∼= HomP∩K(τi, ρ̃)

(the first isomorphism is given simply by restriction of functions from IndGP (ρ̃) to
K, while the second one is Frobenius reciprocity).
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Observe that τi|(P ∩ K) = τN∩K
i ⊕ τi,N∩K , where τN∩K

i denotes N ∩ K-
invariants and τi,N∩K denotes N ∩ K-coinvariants of τi. These two spaces are
P ∩K-subrepresentations since P ∩K normalizes N ∩K. Denote by

pN∩K
i

the projection of Vτi onto τN∩K
i along τi,N∩K (it is given by a well-known integral

formula pN∩K
i =

∫
N∩K τi(n)dn, where the Haar measure on N ∩K is normalized).

Clearly, pN∩K
i are P ∩K-intertwinings.

Now since the action of ρ̃ in (6-2) is defined to be trivial on N , each element
in HomP∩K(τi, ρ̃) vanishes on N ∩K-coinvariants, and therefore we get a natural
mapping from HomP∩K(τi, ρ̃) into HomP∩K(τN∩K

i , ρ̃), which one easily sees that
it is an isomorphism.

Observe that HomP∩K(τN∩K
i , ρ̃)⊆HomM∩K(τN∩K

i , ρ̃). Since (M∩K)(P ∩K) =
P ∩K (see (4-2)), we have here the equality.

Therefore we have seen that

(6-3) HomP∩K(τi, ρ̃) ∼= HomP∩K(τN∩K
i , ρ̃) = HomM∩K(τN∩K

i , ρ̃).

From (6-2) and (6-3) we get

(6-4) HomK(τi, IndGP (ρ̃)) ∼= HomM∩K(τN∩K
i , ρ̃).

Now we can prove the following:

6.4. Theorem. If ω is an irreducible and semi-simple infinitesimal character of
G corresponding to the evaluation in (M,ρ) ∈ Ω(G), then

dimC(Eω(G, τ)) = dimC(HomM∩K(τN∩K
1 , ρ̃)) dimC(HomM∩K(τN∩K

2 , ρ̃)).

Proof. Observe first that Proposition 5.4 and (iv) of Proposition 6.1 imply that
that there exists an isomorphism

(6-5) λ : HomH(K)((H(G) ⊗H(K) Vτ2)
〈ω̃〉, Vτ1) → Eω(G, τ).

Suppose

(6-6) HomK(Vτ2 , IndGP (ρ̃)) = {0}.
Then (v) of Remarks 6.2 implies (H(G) ⊗H(K) Vτ2)〈ω̃〉 = {0}. Now the fact that λ
(from (6-5)) is an isomorphism implies dimC(Eω(G, τ)) = {0}. From the other side,
(6-6) and (6-4) imply dimC(HomM∩K(τN∩K

2 , ρ̃)) = 0. Therefore, the claim of the
theorem holds in this case.

It remains to consider the case

(6-7) HomK(Vτ2 , IndGP (ρ̃)) �= {0}.
We shall assume this in the sequel. Now (v) of Remarks 6.2 implies

(H(G) ⊗H(K) Vτ2)
〈ω̃〉 �= {0}.

Recall that eK0⊗ ∈ HomH(K)(Vτ2 , (H(G) ⊗H(K) Vτ2)〈ω̃〉). Note that by (iii) of
Remarks 6.2, the isomorphism λ is just Φ(H(G)⊗H(K)Vτ2 )〈ω̃〉 restricted to

{eK0⊗ } × HomH(K)((H(G) ⊗H(K) Vτ2)
〈ω̃〉, Vτ1).

Therefore Φ(H(G)⊗H(K)Vτ2 )〈ω̃〉 must be an epimorphism.
Recall that (H(G) ⊗H(K) Vτ2)〈ω̃〉 is by Lemma 5.1 a finitely generated smooth

representation, and it has infinitesimal character (which is ω̃). Theorem 3.6 implies
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that it is admissible. Since infinitesimal character is ω̃, each irreducible subquotient
of the representation (H(G) ⊗H(K) Vτ2)〈ω̃〉 is isomorphic to an irreducible subquo-
tient of IndGP (ρ̃). The last representation is irreducible by the assumptions of the
theorem. Therefore each irreducible subquotient of (H(G)⊗H(K) Vτ2)〈ω̃〉 is isomor-
phic to IndGP (ρ̃). Since ω̃ is semi-simple infinitesimal character (because ω is semi-
simple), (H(G) ⊗H(K) Vτ2)

〈ω̃〉 is isomorphic to a direct sum of finitely many (irre-
ducible) representations, each of which is isomorphic to IndGP (ρ̃). Note that this sum
contains at least one irreducible representation since (H(G) ⊗H(K) Vτ2)〈ω̃〉 �= {0}.

Now (i) and (iii) of Lemma 6.3 imply that ΦIndG
P (ρ̃) is a surjective linear mapping

onto Eω(G, τ). It is injective by (ii) of the same lemma, since IndGP (ρ̃) is irreducible
by the assumption. Therefore, ΦIndG

P (ρ̃) is an isomorphism of

HomK(Vτ2 , IndGP (ρ̃)) ⊗ HomK(IndGP (ρ̃), Vτ1)

onto Eω(G, τ).
One directly sees that

dimC HomK(IndGP (ρ̃), Vτ1) = dimC HomK(Vτ1 , IndGP (ρ̃)).

Now this and (6-4) imply the claim of the theorem. The proof is now complete. �

6.5. Remarks. (i) Theorem 3.9 states that the conditions required in the above
theorem hold on a Zariski open dense subset of infinitesimal characters Ω(G).

(ii) The formula in the theorem and Theorem 3.9 imply that the dimension of the
space of generalized functions Eω(G, τ) is constant on a Zariski open dense subset
of each connected component of Ω(G).

7. Eisenstein integrals

In the sixth section, as a consequence of the study of isomorphisms related to
the induced representations and intertwinings, we got Theorem 6.4. The most
important among these isomorphisms are Frobenius isomorphisms. Moreover, we
can explicitly write these isomorphism, and get explicit formulas for the general-
ized spherical functions. By these explicit formulas, generalized spherical functions
are given by integrals. The integrals in these formulas for generalized spherical
functions come from the isomorphism IndGP (ρ)̃ ∼= IndGP (ρ̃), which is given by inte-
grating over K. Since these integrals are Eisenstein integrals, in this way one gets
generalized spherical functions as Eisenstein integrals (on a big set of infinitesimal
characters). So, in this way Eisenstein integrals naturally arise in this setting (and
background of them are Frobenius isomorphisms and the formula for isomorphism
IndGP (ρ)̃ ∼= IndGP (ρ̃)).

In this section we shall carefully trace the isomorphisms that we mention above,
and at the end get the Eisenstein integral formulas.

Let P = MN be a standard parabolic subgroup with standard Levi decomposi-
tion. If we decompose g ∈ G in a product

g = mnk, m ∈M, n ∈ N, k ∈ K,

then we shall write
mr(g) = m, nr(g) = n, kr(g) = k.

Note that mr(g),nr(g),kr(g) are not uniquely determined by g.
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We shall denote by

κVτ1
: Vτ1 → ˜̃

V τ1

the canonical isomorphism

[κVτ1
(v1)](ṽ1) = ṽ1(v1),

which is an equivalence of representations of K.
Let (π,X) be an admissible representation of G. In the same way we denote by

κX : X → ˜̃
X the canonical isomorphism [κX(y)](ỹ) = ỹ(y) of representations of G.

We define

(7-1) S �→ S, HomK(Ṽτ1 , X̃) → HomK(X,Vτ1)

by
S(y) = κ−1

Vτ1
(κX(y) ◦ S).

Now we shall show that S �→ S carries HomK(Ṽτ1 , X̃) into HomK(X,Vτ1):

S(π(k)y) = κ−1
Vτ1

(κX(π(k)y) ◦ S) = κ−1
Vτ1

(˜̃π(k)(κX (y)) ◦ S)

= κ−1
Vτ1

(κX(y) ◦ π̃(k−1) ◦ S) = κ−1
Vτ1

(κX(y) ◦ S ◦ τ̃1(k−1))

= κ−1
Vτ1

(˜̃τ1(k)(κX(y) ◦ S)) = τ1(k)κ−1
Vτ1

(κX(y) ◦ S) = τ1(k)S(y).

We shall show that S �→ S is injective. Suppose S = 0. Then for every y ∈ X we
have 0 = S(y) = κ−1

Vτ1
(κX(y) ◦ S), which implies κX(y) ◦ S = 0 and further S = 0.

Since HomK(Ṽτ1 , X̃) and HomK(X,Vτ1) have the same (finite) dimension, we get
that (7-1) is an isomorphism.

Suppose now that (π,X) has an infinitesimal character. Now for

α ∈ HomK(Vτ2 , X), S ∈ HomK(Ṽτ1 , X̃)

we have by the definition of the previous section

Φα
S
(g)v2 = S(π(g)(α(v2))) = κ−1

Vτ1

[
κX(π(g)(α(v2))) ◦ S

]
.

If the infinitesimal character of π is ω, then the above generalized spherical function
corresponds to the infinitesimal character ω̃.

The above formula implies

κVτ1

(
Φα
S
(g)v2

)
= S(π(g)(α(v2))) = κX [π(g)(α(v2))] ◦ S

and further

(7-2)
[
κVτ1

(
Φα
S
(g)v2

) ]
(ṽ1) = κX [π(g)(α(v2))] ◦ S(ṽ1) = S(ṽ1)[π(g)(α(v2))].

Now we shall assume that (σ, Y ) is an admissible representation of M with
infinitesimal character ωσ. Let ωσ correspond to the evaluation at (Mσ, ρσ) ∈
Ω(M). Then Proposition 3.8 implies that IndGP (σ) has the infinitesimal character
which corresponds to the evaluation in (Mσ, ρσ) ∈ Ω(G).

We shall assume below that X = IndGP (σ). Consider isomorphisms (6-2) and
(6-3):

HomM∩K(τN∩K
2 , σ) ∼= HomP∩K(τ2, σ) ∼= HomK(τ2, IndKP∩K(σ))

∼= HomK(τ2, IndGP (σ)).
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Denote the resulting isomorphism by

β �→ β′.

Note that the first two isomorphisms above are given by

β �→ β ◦ pN∩K
2 �→ [v2 �→ β ◦ pN∩K

2 (τ2(k)v2)].

Thus

[β′(v2)](g) = δ
1/2
P (mr(g))σ(mr(g))β ◦ pN∩K

2 (τ2(kr(g))v2),

where δP denotes the modular function of P .
We shall also need the isomorphism

HomM∩K(τ̃N∩K
1 , σ̃) ∼= HomK(τ̃1, IndGP (σ̃)),

which will be denoted by U �→ U ′. Thus

[U ′(ṽ1)](g) = δ
1/2
P (mr(g))σ̃(mr(g)) U ◦ p̃N∩K

1 (τ̃1(kr(g))ṽ1)

(in the above formula, p̃N∩K
1 is the natural projection of Ṽτ1 onto N∩K-invariants).

The composition of U �→ U ′ with the isomorphism

HomK(τ̃1, IndGP (σ̃)) ∼= HomK(τ̃1, IndGP (σ)̃ )

will be denoted by U �→ U ′′. Now for f ∈ IndGP (σ) we have

[U ′′(ṽ1)](f) =
∫
K

[(U ′(ṽ1))(k)] (f(k))dk.

Let β ∈ HomM∩K(τN∩K
2 , σ) and U ∈ HomM∩K(τ̃N∩K

1 , σ̃). Then by (7-2)[
κVτ1

(
Φβ

′

U ′′(g)v2
) ]

(ṽ1) = U ′′(ṽ1)[Rg(β′(v2))]

=
∫
K

[(U ′(ṽ1))(k)] (Rg(β′(v2))(k))dk

=
∫
K

[(U ′(ṽ1))(k)] ((β′(v2))(kg))dk

=
∫
K

[
U ◦ p̃N∩K

1 (τ̃1(k)ṽ1)
]
((β′(v2))(kg))dk

=
∫
K

[
U ◦ p̃N∩K

1 (τ̃1(k)ṽ1)
]
(δ1/2P (mr(kg))σ(mr(kg))β ◦ pN∩K

2 (τ2(kr(kg))v2))dk.

Recall that (7-2) implies for m ∈M :[
κV N∩K

τ1

(
Φβ
U

(m)pN∩K
2 v2

) ]
(p̃N∩K

1 ṽ1) = U(p̃N∩K
1 ṽ1)[σ(m)(β(pN∩K

2 v2))].

Thus[
κVτ1

(
Φβ

′

U ′′(g)v2
) ]

(ṽ1)

=
∫
K

δ
1/2
P (mr(kg))

[
κV N∩K

τ1

(
Φβ
U
(mr(kg))pN∩K

2 τ2(kr(kg))v2
) ]

(p̃N∩K
1 τ̃1(k)ṽ1)dk,
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and further

ṽ1

(
Φβ

′

U ′′(g)v2
)

=
∫
K

δ
1/2
P (mr(kg))(p̃N∩K

1 τ̃1(k)ṽ1)
(
Φβ
U
(mr(kg))pN∩K

2 τ2(kr(kg))v2
)
dk

=
∫
K

δ
1/2
P (mr(kg))(τ̃1(k)ṽ1)

(
Φβ
U
(mr(kg))pN∩K

2 τ2(kr(kg))v2
)
dk

=
∫
K

δ
1/2
P (mr(kg))ṽ1

(
τ1(k−1)Φβ

U
(mr(kg))pN∩K

2 τ2(kr(kg))v2
)
dk.

Thus

Φβ
′

U ′′(g) v2 =
∫
K

δ
1/2
P (mr(kg))τ1(k−1)Φβ

U
(mr(kg))pN∩K

2 τ2(kr(kg)) v2 dk.

Denote
τN∩K = (τN∩K

1 , τN∩K
2 ).

For ψ ∈ C(M, τN∩K) define a function ψr : G→ V by the formula

ψr(g)(v2) = ψ(mr(g))pN∩K
2 (τ2(kr(g))v2)

and define δP,r : G→ C by

δP,r(g) = δP (mr(g)).

Let us show that this is well defined. Suppose m1n1k1 = m2n2k2. Then k2k
−1
1 =

n−1
2 m−1

2 m1n1 = m−1
2 m1(m−1

1 m2n
−1
2 m−1

2 m1)n1 ∈ P ∩K, where m−1
2 m1 ∈ M ∩K

and (m−1
1 m2n

−1
2 m−1

2 m1)n1 ∈ N ∩ K. This implies that k2k
−1
1 = n′m−1

2 m1 for
some n′ ∈ N ∩K. Therefore

ψ(m2)pN∩K
2 (τ2(k2)v2) = ψ(m2)pN∩K

2 (τ2(k2k
−1
1 k1)v2)

= ψ(m2)pN∩K
2 (τ2(n′)τ2(m−1

2 m1)τ2(k1)v2) = ψ(m2)τN∩K
2 (m−1

2 m1)pN∩K
2 (τ2(k1)v2)

= ψ(m2m
−1
2 m1)pN∩K

2 (τ2(k1)v2) = ψ(m1)pN∩K
2 (τ2(k1)v2).

This proves that ψr is well defined.
Denote ψ = Φβ

U
. Note ψ ∈ Eω̃σ (M, τN∩K) and

(7-3) Φβ
′

U ′′ (g)v2 =
∫
K

δ
1/2
P,r (kg)τ1(k

−1)ψr(kg)v2dk.

Since from each spherical function in Eωσ(M, τN∩K) we can get some smooth rep-
resentation with central character ωσ (see (i) of Proposition 6.1), we have proved
the first claim of the following

7.1. Theorem. (i) Let ω′ be an infinitesimal character of M determined by
(M ′, ρ′) ∈ Ω(M). Let ω′′ be an infinitesimal character of G determined by (M ′, ρ′) ∈
Ω(G). Define the function δP,r on G by

δP,r(g) = δP (mr(g)).

For ψ ∈ Eω′(M, τN∩K) set

ψr(g) = ψ(mr(g))pN∩K
2 τ2(kr(g)).

Then ψr is well defined and if we define EP by the formula

EP (ψ, g) =
∫
K

δ
1/2
P,r (kg)τ1(k

−1)ψr(kg)dk,
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then EP defines a linear mapping

EP : Eω′(M, τN∩K) → Eω′′(G, τ).

(ii) Let ω be a semi-simple irreducible infinitesimal character of G corresponding
to (M,ρ) ∈ Ω(G) and let ωρ be the infinitesimal character of M corresponding to
(M,ρ) ∈ Ω(M). Then

EP : Eωρ(M, τN∩K) → Eω(G, τ)

is an isomorphism.

Proof. (ii) We have seen in the sixth section that EP is surjective in this case. The
proof of Theorem 6.4 implies (ii). �
7.2. Remarks. (i) Note that (ii) of the above theorem reduces the problem of
describing generalized spherical functions for semi-simple irreducible infinitesimal
characters of G to the generalized spherical functions with cuspidal infinitesimal
character.

It would be interesting to find such a reduction when one does not have semi-
simplicity and irreducibility of the infinitesimal character.

(ii) In this section we could have worked with induced representations, realized
in a way that the group acts by left translations in the induced representations. In
this way we would get slightly different integral formulas for generalized spherical
functions corresponding to non-cuspidal infinitesimal characters, in which g would
precede k (while in our formula g comes after k).

8. Semi-simplicity

Observe that the principal series representation, where the trivial (and the Stein-
berg) representations are subquotients, has infinitesimal character but is not semi-
simple. In this section we shall prove that this is an exceptional situation. Namely,
we shall prove that there exists a dense Zariski open subset of Ω(G) such that the
category of all the smooth representations with the infinitesimal character corre-
sponding to an element of this subset is semi-simple.

We shall start with a simple

8.1. Lemma. Fix an infinitesimal character ω of G. Suppose that in the category
Cω of all the smooth representations of G with the infinitesimal character ω, each
admissible representation of length two is semi-simple. Then the whole category is
semi-simple (i.e. each representation in it is semi-simple).

Proof. First we shall show that each admissible representation in the category is
semi-simple.

Let ω correspond to the evaluation in (M,ρ) ∈ Ω(G) and let π be an admissible
representation in Cω. Since each irreducible representation in Cω is equivalent to
a subquotient of IndGP (ρ), we get that π has finite length. Now we shall prove the
semi-simplicity of π by induction with respect to the length of π.

If π has length one or two, there is nothing to prove. Therefore suppose that π
has length n ≥ 3, and that admissible representation in Cω of strictly smaller length
are semi-simple. Choose an irreducible subrepresentation π′ in π of length n − 2.
The assumption of the lemma implies that π/π′ = τ1 ⊕ τ2 is a direct sum of two
irreducible representations. Consider the composition qi : π → π/π′ = τ1⊕τ2 → τi.
Then the lengths of Ker(qi) are both n − 1, and Ker(q1) �=Ker(q2). This implies
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Ker(q1)+Ker(q2) = π. Now the inductive assumption implies that π is generated
by irreducible subrepresentations. Thus, it is semi-simple.

Suppose now that (π, V ) is a smooth representation in Cω. Let v ∈ V . Denote by
V ′ the subrepresentation of V generated by v. Then V ′ is admissible by Theorem
3.6. By the first part of the proof, V ′ is a sum of irreducible subrepresentations.
Therefore, the whole V is generated by the irreducible subrepresentations. Thus,
(π, V ) is semi-simple. This completes the proof. �

Let Σ be the set of roots of A∅ in G and denote by Σ+ ⊂ Σ (resp. ∆ ⊂ Σ+) the set
of positive (resp. simple) roots determined by the choice of the minimal parabolic
subgroup P∅ (which we have fixed). Recall that we have bijection between subsets
of ∆ and standard parabolic subgroups of G. For Θ ⊆ ∆ we shall denote by
PΘ = MΘNΘ the corresponding standard parabolic subgroup. We shall assume
that MΘ is the standard Levi subgroup, i.e. M∅ ⊆MΘ.

Let W (Θ) := {w ∈ W |w(Θ) = Θ } and let WΘ be the subgroup of W gener-
ated by the reflections corresponding to the elements of Θ. The subgroup W (Θ)
normalizes WΘ. Set

WΘ = W (Θ)/WΘ.

For a representation σ of M and w ∈ WΘ denote by wσ the representation of
M defined by

(wσ)(m) = σ(w−1mw).

Note that wσ is determined up to an equivalence.
We shall fix Θ ⊆ ∆ and denote

P = PΘ and M = Mθ

below.
For a smooth representation π of G, Frobenius reciprocity

HomM (rGM (π), rGM (π)) ∼= HomG(π, IndGP (rGM (π)))

is a canonical isomorphism. By Frobenius isomorphism, the identity homomor-
phism of the left-hand side corresponds to a G-intertwining of the right hand side,
which we shall denote by

Iπ : π → IndGP (rGM (π)).

Observe that Iπ is non-zero if rGM (π) is non-zero. Since IndGP and rGM (π) are adjoint
functors, Iπ defines a natural transform between identity functor and the functor
IndGP ◦ rGM , i.e. if ϕ : π1 → π2 is a G-intertwining, then the diagram

(8-1)

π1
φ−−−−→ π2

Iπ1

� Iπ2

�
IndGP (rGM (π1))

IndG
P (rG

M (φ))−−−−−−−−→ IndGP (rGM (π2))

commutes.
In this paper we shall need only the first claim from the following lemma. Nev-

ertheless, we also present the proof of the second claim of the lemma, since it is
naturaly related to the problem considered in the lemma.
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8.2. Lemma. Let τ be an irreducible cuspidal representation of M = MΘ. Assume
that (M, τ) ∈ Ω(G) is regular and irreducible. Suppose that we have an exact
sequence

(8-2) 0 → IndGP (τ)
f→ π

g→ IndGP (τ) → 0

of G-modules, such that π is indecomposable. Then:
(i) The representation rMG(π) is not semi-simple.
(ii) There exist w ∈ WΘ and an indecomposable representation σ of M satisfying

the exact sequence
0 → wτ → σ → wτ → 0

such that
π ∼= IndGP (σ).

Proof. Denote

γ = IndGP (τ), f ′ = IndGP (rGM (f)), g′ = IndGP (rGM (g)).

Now (8-1) and (8-2) imply that the following diagram is commutative:

0 −−−−→ γ
f−−−−→ π

g−−−−→ γ −−−−→ 0

Iγ

� Iπ

� Iγ

�
0 −−−−→ IndGP (rGM (γ))

f ′
−−−−→ IndGP (rGM (π))

g′−−−−→ IndGP (rGM (γ)) −−−−→ 0.

Moreover, we know that the rows are exact sequences.
Frobenius reciprocity HomM (rGM (γ), τ) ∼= HomG(γ, γ) and the fact that γ �= {0}

imply rGM (γ) �= {0}. Thus, Iγ is injective since γ is irreducible. In the standard way
we get that Iπ is injective (Iπ(v) = 0 ⇒ g′Iπ(v) = 0 = Iγg(v) ⇒ g(v) = 0 ⇒ ∃u
such that v = f(u) ⇒ 0 = Iπ(v) = Iπf(u) ⇒ f ′Iγ = 0 ⇒ Iγ(u) = 0 ⇒ u = 0 ⇒
v = f(u) = 0). Thus,

(8-3) π ↪→ IndGP (rGM (π)).

This implies that that rGM (π) is not semi-simple (otherwise, IndGP (rGM (π)) would be
semi-simple, and then π would be semi-simple). This completes the proof of (i).

(ii) We shall denote by s.s.(τ) the semi-simplification of an admissible represen-
tation τ of finite length. We shall view it here as the direct sum of all its irreducible
subquotients (counted with multiplicities).

Since s.s.(π) = 2 s.s.(γ) by (8-2), s.s.(rGM (π)) = 2 s.s.(rGM (γ)). Now using the
Geometric Lemma of [BZ] or Theorem 6.3.5 of [C] we get

(8-4) s.s.(rGM (π)) = 2
⊕
w∈WΘ

wτ.

Because of regularity of τ , all the wσ’s have different infinitesimal characters (these
are representations of M). Therefore,

rGM (π) =
⊕
w∈WΘ

σw,

where σw are representations of length two whose Jordan-Hölder series contain only
wτ . This implies that

π ↪→ IndGP (
⊕

w∈WΘ

σw) ∼=
⊕

w∈WΘ

IndGP (σw).
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Note that s.s.(IndGP (σw)) = 2 γ. Denote by pw0 the projection of

pw0 :
⊕

w∈WΘ

IndGP (σw) → IndGP (σw0).

Choose w0 ∈WΘ such that pw0 |π �= 0. Suppose that pw0 |π is not injective. Now (8-
3) implies that there exists w1 ∈WΘ such that pw1 |Ker(pw0 |π) �= 0. If pw1 |π is not
injective, then π is a direct sum of Ker(pw0 |π) and Ker(pw1 |π), which contradicts
the assumption of the indecomposability of π. Thus, pw1 |π is injective. Since the
lengths of π and IndGP (σw1) are both two, pw1 |π is also surjective, and therefore it
is an isomorphism. Thus, π ∼= IndGP (σw1 ). If σw1 is decomposable, then IndGP (σw1)
is decomposable, which contradicts the assumption of the indecomposability of π.
Thus, σw is indecomposable. This completes the proof of the lemma. �

Denote
L = M/M0.

Recall that L is a free Z-module of finite rank. Let

p : M → L

be the quotient mapping. Denote by

p
Z(M) : Z(M) → L

the restriction of p to the center Z(M) of M . Then p
Z(M) has a finite cokernel and

compact kernel (which is Z(M) ∩M0).
Denote

L1 = Z(M)/(Z(M) ∩M0).

Observe that Z(M) ↪→ M induces a natural embedding

L1 ↪→ L.

We shall identify L1 with a sublattice of L by the above embedding. These two
lattices have the same rank (which implies that L/L1 is finite).

Observe that
Z(M) = (Z(M) ∩M0)L1.

Using the fact that Z(M)∩M0 is compact, one gets that L1 is cocompact in Z(M).
Observe that for m ∈ M , mM0m−1 = M0. This implies that wMw−1 is well

defined for w ∈ W (Θ), which implies wM0w−1 = M0. Thus, we have the action of
W (Θ) on L = M/M0 given by the conjugation modulo M0. Since the commutator
subgroup of M is contained in M0, WΘ acts trivially on L. Therefore, WΘ acts on
L.

For w ∈W (Θ) and z ∈ Z(M) we shall denote

w.z = wzw−1.

Clearly, this is well defined and defines an action of W (Θ) on Z(M). Clearly,
WΘ acts trivially on Z(M). Therefore WΘ = W (Θ)/WΘ acts on Z(M). Since
Z(M) ∩M0 is obviously the maximal compact subgroup of Z(M), WΘ preserves
Z(M) ∩M0. Therefore, we have the quotient action of WΘ on L1.

By the above definitions, p and p
Z(M) commute with the action of WΘ.
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8.3. Lemma. There exists a WΘ-invariant (for conjugation) subgroup L0 of Z(M)
such that

pZ(M)|L0

is injective, and that
L0 := pZ(M)(L0)

has finite index in L1 (and thus also in L).

Proof. Fix some splitting homomorphism of p
Z(M) : Z(M) → L1, and let the image

of L1 under the splitting homomorphism be

L1.

Observe that L1 ⊆ Z(M), L1
∼= L1 and pZ(M)|L1 is injective.

Denote by
L2

the subgroup of Z(M) generated by
⋃
w∈WΘ w.L1. Then L2 is a finitely generating

abelian group containing L1. It is WΘ-invariant by construction. We can take a
positive integer k such that

L3 := Lk2 = {lk; k ∈ L2}
is without torsion. Obviously this subgroup is WΘ-invariant. Note that L3 is a
free abelian group containing Lk1 . This implies that p

Z(M)(L3) has finite index in
L1 = p

Z(M)(L1).
Fix a basis of the Z-module L3. One gets in a standard way a positive definite

symmetric Z-bilinear form on L3 which takes values in Z. Acting by WΘ on such
a form and then taking the sum of all such forms, one again gets a positive definite
symmetric Z-bilinear form which takes values in Z, and which is invariant under
the action of WΘ.

Fix such aWΘ-invariant positive definite symmetric Z-bilinear form on L3 taking
values in Z. Let

L0

be the orthogonal complement in L3 of Ker(p
Z(M) |L3). Then L0 is WΘ-invariant,

Ker(p
Z(M) |L3) ∩ L0 = 0

and
Ker(p

Z(M) |L3) ⊕ L0

has a finite index in L3. Therefore p
Z(M)(L0) has a finite index in p

Z(M)(L3) and
then also in L1.

Denote
L0 = p

Z(M)(L0).

Note that p
Z(M) induces an isomorphism of L0 onto L0, L0 is WΘ-invariant and L0

has a finite index in L1. �
As we have already observed, we have a positive definite WΘ-invariant Z-bilinear

form on L0, which takes values in Z. We shall fix such a form.
Take a′1 ∈ L0\{1} and denote X ′

1 = WΘ.a′1. Denote by L′
1 the subgroup of

L0 generated by X ′
1. Let (L′

1)⊥ be the orthogonal complement of L′
1 in L0 with

respect to the fixed WΘ-invariant form. Then we know that (L′
1)

⊥ is WΘ-invariant
and that L′

1 ⊕ (L′
1)

⊥ has a finite index in L0. Now choose a′2 ∈ (L′
1)

⊥\{1}, set
X ′

2 = WΘ.a′2 and denote by L′
2 the subgroup generated by X ′

2. Consider the
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orthogonal complement of L′
2 in (L′

1)
⊥. This process must end in a finite number

of steps. In this way we shall get subgroups

L′
1, . . . ,L

′
k

of L0 and subsets
X ′

1, . . . , X
′
k

such that:
(1) The subgroup L′ generated by

⋃k
i=1 L′

i holds

L′ = L′
1 ⊕ · · · ⊕ L′

k.

(2) L′ has a finite index in L1.
(3) Each X ′

i is a WΘ-orbit and generates L′
i as a group.

Denote

L′ = (p
Z(M) |L0)−1(L′),

L′
i = (p

Z(M) |L0)−1(L′
i),

ai = (p
Z(M) |L0)−1(a′i).

Thus, L′ ⊆ Z(M) is a free abelian group which is invariant for the action of WΘ.
Further

p
Z(M) |L′ : L′ → L′ ⊆ L

is an isomorphism which commutes with the action of WΘ, and p
Z(M)(L′) = L′ has

finite index in L.
Let x, y ∈ L, x �= y and c ∈ C. Then one directly sees that there exists χ ∈ Ψ(M)

such that
χ(x) �= cχ(y)

(the case c �= 1 is evident, for the other case use the fact that the transcendence
degree of C over Q is infinite). Moreover, the set of all such χ is a Zariski open
subset of Ψ(M) (recall that Ψ(M) is an irreducible algebraic variety).

Let ρ be an irreducible cuspidal representation of M . Denote

Ψ(M)ρ,diff = {χ ∈ Ψ(M); if 1 ≤i ≤ k and w1, w2 ∈WΘ such that w1.ai �= w2.ai,

then cρ(w1.ai)χ(w1.ai) �= cρ(w2.ai)χ(w2.ai)}.
Since w1.ai �= w2.ai implies p(w1.ai) �= p(w2.ai), which implies w1.a

′
i �= w2.a

′
i,

Ψ(M)ρ,diff is a non-empty Zariski open subset of Ψ(M) by the above observation.

8.4. Lemma. Let χ ∈ Ψ(M)ρ,diff be such that χρ is regular in G. Suppose that
we have an exact sequence

0 → χρ
α→ σ

β→ χρ→ 0

of M -modules. If IndGP (σ) has an infinitesimal character, then the above sequence
splits.

Proof. We shall suppose that IndGP (σ) has an infinitesimal character, but that the
above sequence does not split. We shall see in a sequence of steps that this assump-
tion leads to a contradiction.

(1) First observe that (v) of Remarks 3.10 implies that σ does not have a central
character.
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(2) Now we shall prove that L′ does not act by scalar operators. Suppose that
L′ acts by scalars (in σ). Using the fact that Z(M)/L′ is compact (which follows
from the compactness of Z(M)/L1), one easily sees that there is a basis of the
representation space of σ in which Z(M) acts diagonally. This implies that Z(M)
acts on each of these one-dimensional space as the central character cχρ of χρ.
Thus, Z(M) acts by scalar operators. This cannot happen by (1).

(3) Let z ∈ Z(G). By Proposition 3.8, z acts in IndGP (σ) as IndGP (σ(i∗GM (z))).
Note that IndGP (σ(i∗GM (z)))(f) = σ(i∗GM (z)) ◦ f for f ∈ IndGP (σ). Since f �→ f(1)
is an epimorphism of IndGP (σ) onto σ and z acts as a scalar operator in IndGP (σ),
we directly get that i∗GM (z) act as a scalar operator in σ. Obviously, the scalar by
which we multiply both representations is the same.

(4) Take any z ∈ Z(M). As we have seen in (ii) (and (iii)) of Remarks 3.10, z
defines in a natural way zM ∈ Z(M), which corresponds to

(zM )̂ : Ω(M) → C, (M ′, τ) �→ cτ (z),

of Z(M). Let z′M be an element of Z(M) such that (z′M )̂ coincides with (zM )̂ on
cuspidal components of Ω(M), and that it is zero on non-cuspidal components.

Denote the representation spaces of χρ and σ by U and U ′, respectively. Then

(χρ)(z′M ) = (χρ)(zM ) = (χρ)(z) = cχρ(z) idU and σ(z′M ) = σ(zM ) = σ(z).

(This follows from the fact that if a smooth representation π of M is supported by
some connected component Ω ⊆ Ω(M), then the action of π(z), z ∈ Z(G), depends
only on the restriction z|X ; for this simple observation see the proof of Proposition
4.6 in [T].)

Clearly, the action of WΘ on M (by conjugation) sends Z(M) to itself. For
z ∈ Z(M) denote it by

z′WΘ =
∑

w∈WΘ

(w.z)′M .

Then
(z′WΘ )̂ : Ω(M) → C, (M, τ) �→

∑
w∈WΘ

cτ (w.z),

and on non-cuspidal components it is zero.
Look at the natural mapping iGM : Ω(M) → Ω(G) introduced in the third

section. Suppose that iGM ((M ′, τ ′)) = iGM ((M ′′, τ ′′)). This implies that (M ′, τ ′)
and (M ′′, τ ′′) are conjugate in G. If M ′ is a proper Levi subgroup of M , then
obviously M ′′ is also a proper Levi subgroup of M , and we therefore have

(z′WΘ )̂ ((M ′, τ ′)) = (z′WΘ )̂ ((M ′′, τ ′′)) = 0

by the definition of z′WΘ (and (z′WΘ )̂ ). Suppose M ′ = M . Then M ′′ = M . Further,
τ ′ = w0τ

′′ for some w0 ∈WΘ. Now one easily shows that

(z′WΘ )̂ ((M, τ ′)) =
∑

w∈WΘ

cτ ′(w.z) =
∑

w∈WΘ

cwτ ′(z)

=
∑

w∈WΘ

cww0τ ′′(z) =
∑

w∈WΘ

cwτ ′′(z) =
∑

w∈WΘ

cτ ′′(w.z) = (z′WΘ )̂ ((M, τ ′′)).

This implies that there exists a regular function z′z on Ω(G) (i.e. zz ∈ Z(G)) such
that z′WΘ factors through iGM : Ω(M) → Ω(G), i.e. that

z′WΘ = z′z ◦ iGM .
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Thus
i∗GM (z′z) = z′WΘ .

We have (z′z )̂ : Ω(G) → C and obviously

(z′z )̂ ((M, τ)) =
∑

w∈WΘ

cτ (w.z).

Observe that
σ(ẑ′WΘ) =

∑
w∈WΘ

σ(w.z).

Since z′WΘ = i∗GM (z′z), (3) and the exact sequence in the lemma imply

σ(ẑ′WΘ) = σ(i∗GM (z′z)) =

( ∑
w∈WΘ

cχρ(w.z)

)
idU ′ .

Thus

(8-5) σ(ẑ′WΘ) =
∑

w∈WΘ

σ(w.z) =

( ∑
w∈WΘ

χ(w.z)cρ(w.z)

)
idU ′ .

(5) We have denoted by U and U ′ the representation spaces of χρ and σ, respec-
tively. Let β′ be a splitting homomorphism of β, considered as a linear map only
(i.e. β′ does not need to be an M -intertwining, and it is not, since we suppose that
σ is indecomposable). After identifications, we can consider α and β′ as inclusions.
Therefore,

U ′ = U ⊕ U

(the first summand is M -invariant, while the second one is not). Denote

e1 = α, e2 = β′,

and the projection of U ′ on the i-th summand by

qi.

Clearly
q2 = β.

Observe

e1q1 + e2q2 = idU ′ ,

qiei = idU , qie3−1 = 0, i = 1, 2.

For a linear operator A on U ′ denote Aij = qiAej and A# = [Aij ]1≤i,j≤2. Then
for two operators we have (A1A2)# = A#

1 A
#
2 .

Since α is intertwining, we have

σ(m)11 = q1σ(m)e1 = q1σ(m)α = q1αχρ(m) = q1e1χρ(m) = χρ(m)

and
σ(m)21 = q2σ(m)e1 = q2σ(m)α = q2αχρ(m) = q2e1χρ(m) = 0.

Further,

σ(m)22 = q2σ(m)e2 = βσ(m)e2 = χρ(m)βe2 = χρ(m)q2e2 = χρ(m).
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Thus

σ(m)# =
[
χρ(m) 0

0 χρ(m)

] [
idU Λ(m)
0 idU

]
=
[
χρ(m) χρ(m)Λ(m)

0 χρ(m)

]
for some linear operator Λ(m) on U .

From σ(z1)#σ(z2)# = σ(z1z2)# one gets

Λ(z1z2) = Λ(z1) + Λ(z2)

for z1, z2 ∈ Z(M) (recall that the elements of Z(M) act by scalar operators in
U). Further, for z ∈ Z(M) and m ∈ M , σ(z)#σ(m)# = σ(m)#σ(z)#. This
and the Schur lemma imply that Λ(z) is a scalar operator for z ∈ Z(M). Thus,
there exists a function λ on Z(M) such that Λ(z) = λ(z)idU . The above relation
Λ(z1z2) = Λ(z1) + Λ(z2) implies that λ : Z → C is a homomorphism.

(6) Denote
λL′ = λ|L′.

Note that λL′ = 0 implies that L′ acts by scalars in σ, which can happen by (2).
Thus, λL′ �= 0. Since L′

i generates L′, λL′ |L′
i �= 0 for some i. Since Xi generates

L′
i as a group, λL′ |Xi �= 0. Denote by

WΘ
i

the stabilizer of ai in WΘ.
For z ∈ L′, the relation σ(ẑ′WΘ) =

∑
w∈WΘ σ(w.z) implies

σ(ẑ′WΘ) =
∑

w∈WΘ

[
cχρ(w.z) IdU cχρ(w.z)λL′(w.z) idU

0 cχρ(w.z) IdU

]
.

Since σ(ẑ′WΘ) is a scalar operator, we have∑
w∈WΘ

cχρ(w.z)λL′ (w.z) =
∑

w∈WΘ

χ(w.z)cρ(w.z)λL′(w.z) = 0

(if this is not zero, then σ(ẑ′WΘ) does not act as a multiplication by a scalar on each
e2(u), u ∈ U\{0}). Therefore∑

w∈WΘ

χ(w.aki )cρ(w.a
k
i )λL′ (w.aki ) = 0, k = 1, 2, . . . .

Using the fact that λL′ is additive, we get∑
w∈WΘ

(χ(w.ai)cρ(w.ai))
k
λL′(w.ai) = 0, k = 1, 2, . . . ,

and further

(8-6)
∑

w∈WΘ/WΘ
i

(χ(w.ai)cρ(w.ai))
k
λL′(w.ai) = 0, k = 1, 2, . . . .

Recall that for at least one w ∈ WΘ we have

(8-7) λL′(w.ai) �= 0.

If we consider the homogeneous system∑
w∈WΘ/WΘ

i

(χ(w.ai)cρ(w.ai))
k
xi = 0, k = 1, 2, . . . , card (WΘ/WΘ

i),
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then one easily sees that the determinant of it is non-zero. Namely, the determinant
of the system is a non-zero multiple of a van der Monde determinant. This van der
Monde determinant factors as a product of factors

(χ(w′.ai)cρ(w′.ai) − χ(w′′.ai)cρ(w′′.ai)),

with different w′, w′′ ∈ WΘ/WΘ
i . Then since w′ai and w′′ai are different, the

definition of Ψ(M)ρ,diff implies that the determinant is non-zero. Therefore, the
above system does not have a non-zero solution. This contradicts (8-6) and (8-7).

The proof of the lemma is now complete. �

Denote by Ψ(M)ρ,reg (resp. Ψ(M)ρ,irr) the set of all χ in Ψ(M) such that χρ is
regular in G (resp. IndGP (χρ) is irreducible). Then these two sets are non-empty
Zariski open subsets of Ψ(M). Let

Ψ(M)W
Θ

ρ,diff =
⋂

w∈WΘ

w.Ψ(M)ρ,diff,

Ψ(M)W
Θ

ρ,reg =
⋂

w∈WΘ

w.Ψ(M)ρ,reg,

Ψ(M)W
Θ

ρ,irr =
⋂

w∈WΘ

w.Ψ(M)ρ,irr,

Ψ(M)ρ,s.s. = Ψ(M)W
Θ

ρ,diff ∩ Ψ(M)W
Θ

ρ,reg ∩ Ψ(M)W
Θ

ρ,irr.

Note that Ψ(M)ρ,s.s. is a Zariski open dense subset of Ψ(M).

8.5. Theorem. Let (M,ρ) ∈ Ω(G) and let χ ∈ Ψ(M)ρ,s.s.. Suppose that π
is a smooth representation with infinitesimal character equal to the evaluation in
(M,χρ). Then π is a direct sum of irreducible representations, each of which is
isomorphic to IndGP (χρ).

Proof. By Lemma 8.1 it is enough to prove semi-simplicity for π of length 2.
Suppose that we have have a length two admissible representation π of G with

infinitesimal character equal to evaluation in (M,χρ) which is indecomposable,
with χ ∈ Ψ(M)ρ,s.s.. Then by (i) of Lemma 8.2 there exist w ∈ WΘ and an
indecomposable representation σ of M of length two satisfying the exact sequence

0 → w(χρ) → σ → w(χρ) → 0.

This cannot happen by the previous lemma, and by the definition of Ψ(M)ρ,s.s..
Thus, π is decomposable.

By the definition of Ψ(M)ρ,s.s., each irreducible subquotient must be isomorphic
to IndGP (χρ). �

Since the quotient mapping χ �→ χρ from Ψ(M) onto the connected component
of Ω(G) is open, the above theorem implies Theorem 3.9.
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