Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On degrees of irreducible Brauer characters


Author: W. Willems
Journal: Trans. Amer. Math. Soc. 357 (2005), 2379-2387
MSC (2000): Primary 20C20, 20G40
DOI: https://doi.org/10.1090/S0002-9947-04-03561-5
Published electronically: September 2, 2004
MathSciNet review: 2140443
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Based on a large amount of examples, which we have checked so far, we conjecture that $\vert G\vert _{p'}\le\sum_\varphi \varphi(1)^2$ where $p$ is a prime and the sum runs through the set of irreducible Brauer characters in characteristic $p$ of the finite group $G$. We prove the conjecture simultaneously for $p$-solvable groups and groups of Lie type in the defining characteristic. In non-defining characteristics we give asymptotically an affirmative answer in many cases.


References [Enhancements On Off] (What's this?)

  • 1. J. ALPERIN. Projective modules and tensor products. J. Pure and Appl. Algebra 8 (1976), 235-241. MR 53:5712
  • 2. J.L. ALPERIN, M.J. COLLINS AND D.A. SIBLEY. Projective modules, filtrations and Cartan invariants. Bull. London Math. Soc. (3) 16 (1984), 416-420. MR 85m:20009
  • 3. N. BOURBAKI Groupes et algèbre de Lie. Chapitres 4,5 et 6. Masson, Paris 1981. MR 83g:17001
  • 4. R. BRAUER. Notes on representations of finite groups. J. London Math. Soc. (2), 13 (1976), 162-166. MR 53:3091
  • 5. R. BRAUER. Representations of finite groups. Lectures on Modern Mathematics, Vol. 1, Wiley, New York, 1963, 133-175. MR 31:2314
  • 6. R. BRAUER AND C.J. NESBITT. On the modular characters of groups, Ann. Math.(2) 42 (1941), 556-590. MR 2:309c
  • 7. P. BROCKHAUS. On the radical of a group algebra. J. Algebra 95 (1985), 454-472. MR 87h:20021
  • 8. R. BURKHARDT. Die Zerlegungsmatrizen der Gruppen PSL($2,p^f$). J. Algebra 40 (1976), 75-96. MR 58:864
  • 9. R.W. CARTER. Finite groups of Lie type, conjugacy classes and complex characters. Wiley, Chichester 1985. MR 87d:20060
  • 10. D.I. DERIZIOTIS. On the number of conjugacy classes in finite groups of Lie type. Comm. Algebra 13 (1985), 1019-1045. MR 86i:20067
  • 11. W. FEIT. The representation thoery of finite groups. North Holland, Amsterdam 1982. MR 83g:20001
  • 12. P. FLEISCHMANN AND I. JANISZCZAK. The number of regular semisimple elements for Chevalley groups of classical type. J. Algebra 155 (1993), 482-528. MR 94f:20090
  • 13. B. HUPPERT AND N. BLACKBURN. Finite groups II. Springer-Verlag, Berlin/Heidelberg/New York 1982. MR 84i:20001a
  • 14. M. KIYOTA AND T. WADA. Some remarks on the eigenvalues of the Cartan matrix in finite groups. Commun. Algebra 21, No.11 (1993), 3839-3860. MR 94i:20021
  • 15. P. LANDROCK AND G.O. MICHLER. Principal $2$-blocks of simple groups of Lie type. Trans. Am. Math. Soc. 260 (1980), 83-111. MR 81h:20013
  • 16. G. NAVARRO. Characters and blocks of finite groups. London Math. Soc., Lecture Notes Series 250, Cambridge Univ. Press, Cambridge, 1998. MR 2000a:20018
  • 17. F.D. VELDKAMP. Regular characters and regular elements. Comm. Algebra 5(12) (1977), 1259-1273. MR 58:16857
  • 18. D.A.R. WALLACE. On the radical of a group algebra, Proc. Am. Math. Soc. 12 (1961), 133-137. MR 22:12146
  • 19. H.N. WARD. On Ree's series of simple groups. Trans. Amer. Math. Soc. 121 (1966), 62-89. MR 33:5752

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 20C20, 20G40

Retrieve articles in all journals with MSC (2000): 20C20, 20G40


Additional Information

W. Willems
Affiliation: Institut für Algebra und Geometrie, Fakultät für Mathematik, Otto-von-Guericke-Universität, 39016 Magdeburg, Germany

DOI: https://doi.org/10.1090/S0002-9947-04-03561-5
Received by editor(s): January 9, 2003
Received by editor(s) in revised form: October 29, 2003
Published electronically: September 2, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society