Smoothness of equisingular families of curves

Author:
Thomas Keilen

Journal:
Trans. Amer. Math. Soc. **357** (2005), 2467-2481

MSC (2000):
Primary 14H10, 14H15, 14H20; Secondary 14J26, 14J27, 14J28, 14J70

Published electronically:
November 4, 2004

MathSciNet review:
2140446

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Francesco Severi (1921) showed that equisingular families of plane nodal curves are T-smooth, i.e. smooth of the expected dimension, whenever they are non-empty. For families with more complicated singularities this is no longer true. Given a divisor on a smooth projective surface it thus makes sense to look for conditions which ensure that the family of irreducible curves in the linear system with precisely singular points of types is T-smooth. Considering different surfaces including the projective plane, general surfaces in , products of curves and geometrically ruled surfaces, we produce a sufficient condition of the type

where is some invariant of the singularity type and is some constant. This generalises the results of Greuel, Lossen, and Shustin (2001) for the plane case, combining their methods and the method of Bogomolov instability. For many singularity types the -invariant leads to essentially better conditions than the invariants used by Greuel, Lossen, and Shustin (1997), and for most classes of geometrically ruled surfaces our results are the first known for T-smoothness at all.

**[CC99]**L. Chiantini and C. Ciliberto,*On the Severi varieties on surfaces in 𝐏³*, J. Algebraic Geom.**8**(1999), no. 1, 67–83. MR**1658208****[CS97]**L. Chiantini and E. Sernesi,*Nodal curves on surfaces of general type*, Math. Ann.**307**(1997), no. 1, 41–56. MR**1427674**, 10.1007/s002080050021**[Fla01]**F. Flamini,*Moduli of nodal curves on smooth surfaces of general type*, J. Algebraic Geom.**11**(2002), no. 4, 725–760. MR**1910265**, 10.1090/S1056-3911-02-00322-3**[FM01]**F. Flamini and C. Madonna,*Geometric linear normality for nodal curves on some projective surfaces*, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8)**4**(2001), no. 1, 269–283 (English, with Italian summary). MR**1821407****[GH85]**Phillip Griffiths and Joe Harris,*On the Noether-Lefschetz theorem and some remarks on codimension-two cycles*, Math. Ann.**271**(1985), no. 1, 31–51. MR**779603**, 10.1007/BF01455794**[GK89]**Gert-Martin Greuel and Ulrich Karras,*Families of varieties with prescribed singularities*, Compositio Math.**69**(1989), no. 1, 83–110. MR**986814****[GL96]**Gert-Martin Greuel and Christoph Lossen,*Equianalytic and equisingular families of curves on surfaces*, Manuscripta Math.**91**(1996), no. 3, 323–342. MR**1416715**, 10.1007/BF02567958**[GLS97]**Gert-Martin Greuel, Christoph Lossen, and Eugenii Shustin,*New asymptotics in the geometry of equisingular families of curves*, Internat. Math. Res. Notices**13**(1997), 595–611. MR**1459626**, 10.1155/S1073792897000391**[GLS98]**Gert-Martin Greuel, Christoph Lossen, and Eugenii Shustin,*Geometry of families of nodal curves on the blown-up projective plane*, Trans. Amer. Math. Soc.**350**(1998), no. 1, 251–274. MR**1443875**, 10.1090/S0002-9947-98-02055-8**[GLS00]**Gert-Martin Greuel, Christoph Lossen, and Eugenii Shustin,*Castelnuovo function, zero-dimensional schemes and singular plane curves*, J. Algebraic Geom.**9**(2000), no. 4, 663–710. MR**1775310****[GLS01]**Gert-Martin Greuel, Christoph Lossen, and Eugenii Shustin,*The variety of plane curves with ordinary singularities is not irreducible*, Internat. Math. Res. Notices**11**(2001), 543–550. MR**1836729**, 10.1155/S1073792801000289**[Har77]**Robin Hartshorne,*Algebraic geometry*, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR**0463157****[Kei01]**Thomas Keilen,*Families of curves with prescribed singularities*, Ph.D. thesis, Universität Kaiserslautern, 2001, http:// www. mathematik. uni-kl. de/ keilen/ download/ Thesis/ thesis.ps.gz.**[KT02]**Thomas Keilen and Ilya Tyomkin,*Existence of curves with prescribed topological singularities*, Trans. Amer. Math. Soc.**354**(2002), no. 5, 1837–1860 (electronic). MR**1881019**, 10.1090/S0002-9947-01-02877-X**[Laz97]**Robert Lazarsfeld,*Lectures on linear series*, Complex algebraic geometry (Park City, UT, 1993) IAS/Park City Math. Ser., vol. 3, Amer. Math. Soc., Providence, RI, 1997, pp. 161–219. With the assistance of Guillermo Fernández del Busto. MR**1442523****[LK03a]**Christoph Lossen and Thomas Keilen,*The -invariant for plane curve singularities*, Preprint, 2003.**[LK03b]**Christoph Lossen and Thomas Keilen,*Injective analytic maps - a counterexample to the proof*, Preprint, 2003.**[Los98]**Christoph Lossen,*The geometry of equisingular and equianalytic families of curves on a surface*, Ph.d. thesis, FB Mathematik, Universität Kaiserslautern, Aug. 1998, http:// www. mathematik. uni-kl. de/ lossen/ download/ Lossen002/ Lossen002.ps.gz.**[Lue87a]**Ignacio Luengo,*The 𝜇-constant stratum is not smooth*, Invent. Math.**90**(1987), no. 1, 139–152. MR**906582**, 10.1007/BF01389034**[Lue87b]**Ignacio Luengo,*On the existence of complete families of projective plane curves, which are obstructed*, J. London Math. Soc. (2)**36**(1987), no. 1, 33–43. MR**897672**, 10.1112/jlms/s2-36.1.33**[Sev21]**Francesco Severi,*Vorlesungen über Algebraische Geometrie*, Bibliotheca Mathematica Teubneriana, no. 32, Teubner, 1921.**[Shu87]**E. I. Shustin,*Versal deformations in a space of plane curves of fixed degree*, Funktsional. Anal. i Prilozhen.**21**(1987), no. 1, 90–91 (Russian). MR**888028****[Shu91]**-,*On manifolds of singular algebraic curves*, Selecta Math. Sov.**10**(1991), 27-37.**[Shu94]**Eugenii Shustin,*Smoothness and irreducibility of varieties of plane curves with nodes and cusps*, Bull. Soc. Math. France**122**(1994), no. 2, 235–253 (English, with English and French summaries). MR**1273903****[Shu96]**-,*Smoothness and irreducibility of varieties of algebraic curves with ordinary singularities*, Israel Math. Conf. Proc., no. 9, Amer. Math. Soc., 1996, pp. 393-416.**[Shu97]**Eugenii Shustin,*Smoothness of equisingular families of plane algebraic curves*, Internat. Math. Res. Notices**2**(1997), 67–82. MR**1429954**, 10.1155/S1073792897000056**[Tan80]**Allen Tannenbaum,*Families of algebraic curves with nodes*, Compositio Math.**41**(1980), no. 1, 107–126. MR**578053****[Tan82]**Allen Tannenbaum,*Families of curves with nodes on 𝐾3 surfaces*, Math. Ann.**260**(1982), no. 2, 239–253. MR**664378**, 10.1007/BF01457238**[Vas90]**Victor A. Vassiliev,*Stable cohomology of complements to the discriminants of deformations of singularities of smooth functions*, J. Sov. Math.**52**(1990), 3217-3230.**[Wah74]**Jonathan M. Wahl,*Deformations of plane curves with nodes and cusps*, Amer. J. Math.**96**(1974), 529–577. MR**0387287**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
14H10,
14H15,
14H20,
14J26,
14J27,
14J28,
14J70

Retrieve articles in all journals with MSC (2000): 14H10, 14H15, 14H20, 14J26, 14J27, 14J28, 14J70

Additional Information

**Thomas Keilen**

Affiliation:
Fachbereich Mathematik, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D – 67663 Kaiserslautern, Germany

Email:
keilen@mathematik.uni-kl.de

DOI:
https://doi.org/10.1090/S0002-9947-04-03588-3

Keywords:
Algebraic geometry,
singularity theory

Received by editor(s):
September 1, 2003

Received by editor(s) in revised form:
December 12, 2003

Published electronically:
November 4, 2004

Additional Notes:
The author was partially supported by the German Israeli Foundation for Research and Development, by the Hermann Minkowski – Minerva Center for Geometry at Tel Aviv University and by EAGER

Article copyright:
© Copyright 2004
American Mathematical Society