Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Upper bounds for the number of solutions of a Diophantine equation


Author: M. Z. Garaev
Journal: Trans. Amer. Math. Soc. 357 (2005), 2527-2534
MSC (2000): Primary 11D45, 11L03
DOI: https://doi.org/10.1090/S0002-9947-04-03611-6
Published electronically: December 28, 2004
MathSciNet review: 2140449
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give upper bound estimates for the number of solutions of a certain diophantine equation. Our results can be applied to obtain new lower bound estimates for the $L_1$-norm of certain exponential sums.


References [Enhancements On Off] (What's this?)

  • 1. S. V. Bochkarev, A method for estimating the $L_1$-norm of an exponential sum, Proc. Steklov Inst. Math., 218, 74-78 (1997). MR 99h:11093
  • 2. G. Elekes, M. B. Nathanson and I. Z. Ruzsa, Convexity and Sumsets, J. Number Theory, 83, 194-201 (2000). MR 2001e:11020
  • 3. M. Z. Garaev, On lower bounds for the $L_1$-norm of exponential sums, Math. Notes, 68, 713-720 (2000). MR 2002f:11109
  • 4. M. Z. Garaev, On the Waring-Goldbach problem with small non-integer exponent, Acta Arith. 108.3 (2003), 297-302. MR 2004c:11183
  • 5. M. Z. Garaev and Ka-Lam Kueh, $L_1$-norms of exponential sums and the corresponding additive problem, Z. Anal. Anwendungen, 20, 999-1006 (2001).MR 2002k:11141
  • 6. A. A. Karatsuba, An estimate of the $L_1$-norm of an exponential sum, Math. Notes, 64, 401-404 (1998). MR 2000a:11113
  • 7. S. V. Konyagin, On the problem of Littlewood, Izv. Acad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.], 45(2), 243-265 (1981). MR 83d:10045
  • 8. S. V. Konyagin, An estimate of the $L_1$-norm of an exponential sum, The Theory of Approximations of Functions and Operators. Abstracts of Papers of the International Conference Dedicated to Stechkin's 80th Anniversary [in Russian]. Ekaterinburg (2000), pp. 88-89.
  • 9. O. C. McGehee, L. Pigno and B. Smith, Hardy's inequality and the $L_1$ norm of exponential sums, Ann. of Math.(2), 113(3), 613-618 (1981). MR 83c:43002b
  • 10. I. I. Piatetski-Shapiro, On a variant of Waring-Goldbach's problem, Mat. Sb. 30 (1952), 105-120 (in Russian). MR 14:451d
  • 11. A. Zygmund, Trigonometric Series, Vol. 1. Cambridge Univ. Press, Cambridge (1959). MR 21:6498

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11D45, 11L03

Retrieve articles in all journals with MSC (2000): 11D45, 11L03


Additional Information

M. Z. Garaev
Affiliation: Instituto de Matemáticas UNAM, Campus Morelia, Ap. Postal 61-3 (Xangari) CP 58089, Morelia, Michoacán, México
Email: garaev@matmor.unam.mx

DOI: https://doi.org/10.1090/S0002-9947-04-03611-6
Keywords: Diophantine equation, Karatsuba's theorem, Konyagin's estimate
Received by editor(s): September 8, 2003
Received by editor(s) in revised form: January 10, 2004
Published electronically: December 28, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society