Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On some constants in the supercuspidal characters of $\operatorname{GL}_l$, $l$ a prime $\neq p$


Author: Tetsuya Takahashi
Journal: Trans. Amer. Math. Soc. 357 (2005), 2509-2526
MSC (2000): Primary 22E50; Secondary 11F70
DOI: https://doi.org/10.1090/S0002-9947-04-03727-4
Published electronically: December 29, 2004
MathSciNet review: 2140448
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The article gives explicit values of some constants which appear in the character formula for the irreducible supercuspidal representation of $\operatorname{GL}_l(F)$ for $F$ a local field of the residual characteristic $p\neq l$.


References [Enhancements On Off] (What's this?)

  • 1. J. Arthur and L. Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Math. Studies 120, Princeton Univ. Press, 1989.MR 1007299 (90m:22041)
  • 2. A. Badulescu, Correspondance entre $\operatorname{GL}_n$ et ses formes intérieures en caractéristique positive, Thèse, Université de Paris-sud, Centre d'Orsay, 1999.
  • 3. C. J. Bushnell and A. Fröhlich, Gauss Sums and $p$-adic Division Algebras, Lecture Notes in Math. 987, Springer, Berlin, 1983. MR 0701540 (84m:12017)
  • 4. C. J. Bushnell and G. Henniart, Local Tame Lifting For $\operatorname{GL}(N)$I: Simple characters, Inst. Hautes Études Sci. Publ. Math. No. 83 (1996), 105-233. MR 1423022 (98m:11129)
  • 5. H. Carayol, Représentation cuspidales du groupe linéaire, Ann. Scient. Éc. Norm. Sup. 17 (1984), 191-226. MR 0760676 (86f:22019)
  • 6. L. Corwin and R. Howe, Computing characters of tamely ramified division algebras, Pac. J. Math. 73 (1977), 461-477. MR 0492084 (58:11238)
  • 7. L. Corwin, A. Moy and P. J. Sally, Jr., Supercuspidal character formulas for $\operatorname{GL}_l$, Contemp. Math. 191, AMS, 1995, 1-11. MR 1365530 (96m:22037)
  • 8. S. M. Debacker, Supercuspidal characters of $\operatorname{GL}_l$, $l$ a prime, Ph.D. thesis, Univ. of Chicago, 1997.
  • 9. S. M. Debacker and P. J. Sally, Jr., Germs, characters and the Fourier transforms of nilpotent orbits, The Mathematical Legacy of Harish-Chandra (Baltimore, MD, 1998), Proc. Sympos. Pure Math. 68, AMS, 2000, pp. 191-221. MR 1767897 (2001i:22022)
  • 10. P. Deligne, D. Kazhdan, and M.-F. Vinéras, Représentations des algèbres centrales simples $p$-adiques, in: Représentations des Groupes Réductifs sur un Corps Local, Herman, Paris, 1984, pp. 33-117. MR 0771672 (86h:11044)
  • 11. R. Godement and H. Jacquet, Zeta functions of simple algebras, Lecture Notes in Math. 260, Springer, Berlin, 1972. MR 0342495 (49:7241)
  • 12. G. Henniart, Correspondance de Jaquet-Langlands explicite I : le cas modéré de degré premier in: Séminaire de Theórie des Nombres, Paris 1990-91, Progress in Math. 108, Birkhäuser, Basel, 1993, pp. 85-114. MR 1263525 (95d:11064)
  • 13. R. Howe, Kirillov theory for compact $p$-adic groups, Pac. J. Math. 73, (1977), 365-381. MR 0579176 (58:28314)
  • 14. R. Howe, Tamely ramified supercuspidal representations of $\operatorname{GL}_n(F)$, Pac. J. Math. 73 (1977), 437-460. MR 0492087 (58:11241)
  • 15. H. Hijikata, H. Saito, and M. Yamauchi, Representations of quaternion algebras over local fields and trace formula of Hecke operators, J. Number Theory 43 (1993), 123-167. MR 1207495 (94e:11126)
  • 16. P. Kutzko, Character formulas for supercuspidal representations of $\operatorname{GL}_l$, $l$ a prime, Amer. J. Math. 109 (1987), 201-222. MR 0882420 (88k:22003)
  • 17. A. Moy, Local constant and the tame Langlands correspondence, Amer. J. Math. 108 (1986), 863-930. MR 0853218 (88b:11081)
  • 18. F. Murnaghan, Characters of supercuspidal representations of $\operatorname{SL}(n)$, Pac. J. Math. 170 (1995), 217-235. MR 1359978 (96k:22030)
  • 19. F. Murnaghan, Characters of supercuspidal representations of classical groups, Ann. Sci. Éc. Norm. Sup. (4) 29 (1996), 49-105. MR 1368705 (98c:22016)
  • 20. F. Murnaghan, Local character expansions and Shalika germs for $\operatorname{GL}(n)$, Math. Ann. 304 (1996), 423-455. MR 1375619 (98b:22020)
  • 21. H. Reimann, Representations of tamely ramified p-adic division and matrix algebras, J. Number Theory 38 (1991), 58-105. MR 1105671 (92h:11103)
  • 22. J. Rogawski, Representations of $\operatorname{GL}(n)$ and division algebras over $p$-adic field, Duke Math. J. 50 (1983), 161-196. MR 0700135 (84j:12018)
  • 23. T. Takahashi, Characters of cuspidal unramified series for central simple algebras of prime degree, J. Math. Kyoto Univ. 32-4 (1992), 873-888. MR 1194118 (94e:11124)
  • 24. T. Takahashi, Character formula for representations of local quaternion algebras (Wildly ramified case), J. Math. Kyoto Univ. 36-1 (1996), 151-197. MR 1381546 (97f:11096)
  • 25. T. Takahashi, Formulas for tamely ramified supercuspidal characters of $\operatorname{GL}_3$, Trans. Amer. Math. Soc. 355 (2003), no. 2, 567-591. MR 1932714 (2003i:22020)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 22E50, 11F70

Retrieve articles in all journals with MSC (2000): 22E50, 11F70


Additional Information

Tetsuya Takahashi
Affiliation: Department of Mathematics and Information Science, College of Integrated Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Osaka 599-8531, Japan
Email: takahasi@mi.cias.osakafu-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9947-04-03727-4
Keywords: Character, supercuspidal representation, Kloosterman sum
Received by editor(s): January 7, 2004
Published electronically: December 29, 2004
Article copyright: © Copyright 2004 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society