Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Stable rank and real rank for some classes of group $C^\ast$-algebras


Authors: Robert J. Archbold and Eberhard Kaniuth
Journal: Trans. Amer. Math. Soc. 357 (2005), 2165-2186
MSC (2000): Primary 46L05, 46L35, 22D25
DOI: https://doi.org/10.1090/S0002-9947-05-03835-3
Published electronically: January 21, 2005
MathSciNet review: 2140436
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the real and stable rank of the $C^\ast$-algebras of locally compact groups with relatively compact conjugacy classes or finite-dimensional irreducible representations. Estimates and formulae are given in terms of the group-theoretic rank.


References [Enhancements On Off] (What's this?)

  • 1. E.J. Beggs and D.E. Evans, The real rank of algebras of matrix valued functions, Intern. J. Math. 2 (1991), 131-137. MR 1094700 (92e:46114)
  • 2. L.G. Brown and G.K. Pedersen, $C^\ast$-algebras of real rank zero, J. Funct. Anal. 99 (1991), 131-149. MR 1120918 (92m:46086)
  • 3. K.R. Davidson, $C^\ast$-algebras by example, Fields Institute Monographs, American Mathematical Society, 1996. MR 1402012 (97i:46095)
  • 4. J. Dixmier, $C^\ast$-algebras, North-Holland, 1977.MR 0458185 (56:16388)
  • 5. K.J. Dykema, U. Haagerup and M. Rørdam, The stable rank of some free product $C^\ast$-algebras, Duke Math. J. 90 (1997), 95-121.MR 1478545 (99g:46077a)
  • 6. K.J. Dykema and P. de la Harpe, Some groups whose reduced $C^\ast$-algebras have stable rank one, J. Math. Pures Appl. 78 (1999), 591-608.MR 1708667 (2000f:46070)
  • 7. S. Echterhoff and E. Kaniuth, Certain group extensions and twisted covariance algebras with generalized continuous trace, In: Harmonic Analysis (Eds. P. Eymard and J.P. Pier), LNM 1359, 159-169, Springer-Verlag, 1987.MR 0974312 (90c:46083)
  • 8. N. Elhage Hassan, Rang reel de certaines extensions, Proc. Amer. Math. Soc. 123 (1995), 3067-3073. MR 1264814 (95m:46117)
  • 9. J.M.G. Fell, The dual spaces of $C^\ast$-algebras, Trans. Amer. Math. Soc. 94 (1960), 365-403. MR 0146681 (26:4201)
  • 10. J.M.G. Fell and R.S. Doran, Representations of $\ast$-algebras, locally compact groups, and Banach $\ast$-algebraic bundles, Vol. 2, Academic Press, 1988. MR 0936629 (90c:46002)
  • 11. S. Grosser and M. Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math. 246 (1971), 1-40.MR 0284541 (44:1766)
  • 12. E. Hewitt and K.A. Ross, Abstract harmonic analysis I, Springer-Verlag, 1963. MR 0156915 (28:158)
  • 13. E. Kaniuth, Primitive ideal spaces of groups with relatively compact conjugacy classes, Arch. Math. 32 (1979), 16-24.MR 0532844 (81f:22009)
  • 14. E. Kaniuth, Group $C^\ast$-algebras of real rank zero or one, Proc. Amer. Math. Soc. 119 (1993), 1347-1354. MR 1164146 (94a:46074)
  • 15. E. Kaniuth and K.F. Taylor, Kazhdan constants and the dual space topology, Math. Ann. 293 (1992), 495-508. MR 1170523 (93i:22003)
  • 16. C.C. Moore, Groups with finite dimensional irreducible representations, Trans. Amer. Math. Soc. 166 (1972), 401-410. MR 0302817 (46:1960)
  • 17. K. Nagami, Dimension theory, Academic Press, New York/London, 1970. MR 0271918 (42:6799)
  • 18. M. Nagisa, Stable rank of some full group $C^\ast$-algebras of groups obtained by the free product, Intern. J. Math. 8 (1997), 375-382. MR 1454479 (98i:46057)
  • 19. M. Nagisa, H. Osaka and N.C. Phillips, Ranks of algebras of continuous $C^\ast$-algebra valued functions, Canad. J. Math. 53 (2001), 979-1030. MR 1859764 (2002h:46094)
  • 20. V. Nistor, Stable range for tensor products of extensions of $K$ by $C(X)$, J. Oper. Theory 16 (1986), 387-396.MR 0860355 (88b:46085)
  • 21. V. Nistor, Stable rank for a certain class of type I $C^\ast$-algebras, J. Oper. Theory 17 (1987), 365-373.MR 0887231 (88h:46110)
  • 22. H. Osaka, Real rank of crossed products by connected compact groups, Bull. London Math. Soc. 27 (1995), 257-264.MR 1328702 (96e:46076)
  • 23. A.R. Pears, Dimension theory of general spaces, Cambridge University Press, Cambridge, 1975. MR 0394604 (52:15405)
  • 24. M.A. Rieffel, Dimension and stable rank in the $K$-theory of $C^\ast$-algebras, Proc. London Math. Soc.(3) 6 (1983), 301-333. MR 0693043 (84g:46085)
  • 25. E. Schulz, The stable rank of crossed products of sectional $C^\ast$-algebras by compact Lie groups, Proc. Amer. Math. Soc. 112 (1991), 733-744. MR 1042272 (91j:46082)
  • 26. A.J.-L. Sheu, A cancellation theorem for projective modules over the group $C^\ast$-algebras of certain nilpotent Lie groups, Canad. J. Math. 39 (1987), 365-427. MR 0899843 (88i:46093)
  • 27. T. Sudo, Stable rank of the reduced $C^\ast$-algebras of non-amenable Lie groups of type I, Proc. Amer. Math. Soc. 125 (1997), 3647-3654.MR 1415371 (98b:46093)
  • 28. T. Sudo, Stable rank of the $C^\ast$-algebras of amenable Lie groups of type I, Math. Scand. 84 (1999), 231-242.MR 1700530 (2000g:46078)
  • 29. T. Sudo, Dimension theory of group $C^\ast$-algebras of connected Lie groups of type I, J. Math. Soc. Japan 42 (2000), 583-590. MR 1760606 (2001h:22007)
  • 30. T. Sudo and H. Takai, Stable rank of the $C^\ast$-algebras of nilpotent Lie groups, Intern. J. Math. 6 (1995), 439-446.MR 1327158 (96b:46083)
  • 31. T. Sudo and H. Takai, Stable rank of the $C^\ast$-algebras of solvable Lie groups of type I, J. Oper. Theory 38 (1997), 67-86.MR 1462016 (99a:46125)
  • 32. J. Tomiyama and M. Takesaki, Applications of fibre bundles to the certain class of $C^\ast$-algebras, Tohoku Math. J. 13 (1963), 498-523.MR 0139025 (25:2465)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 46L05, 46L35, 22D25

Retrieve articles in all journals with MSC (2000): 46L05, 46L35, 22D25


Additional Information

Robert J. Archbold
Affiliation: Department of Mathematical Sciences, University of Aberdeen, Aberdeen AB24 3UE, Scotland, United Kingdom
Email: r.archbold@maths.abdn.ac.uk

Eberhard Kaniuth
Affiliation: Institut für Mathematik, Universität Paderborn, D-33095 Paderborn, Germany
Email: kaniuth@math.uni-paderborn.de

DOI: https://doi.org/10.1090/S0002-9947-05-03835-3
Received by editor(s): February 20, 2003
Published electronically: January 21, 2005
Additional Notes: This work was supported by a travel grant from the German Research Foundation
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society