Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On nonlinear wave equations with degenerate damping and source terms


Authors: Viorel Barbu, Irena Lasiecka and Mohammad A. Rammaha
Journal: Trans. Amer. Math. Soc. 357 (2005), 2571-2611
MSC (2000): Primary 35L05, 35L20; Secondary 58J45
DOI: https://doi.org/10.1090/S0002-9947-05-03880-8
Published electronically: March 1, 2005
MathSciNet review: 2139519
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we focus on the global well-posedness of the differential equation $u_{tt}- \Delta u + \vert u\vert^k\partial j(u_t) = \vert u\vert^{ p-1}u \, \text{ in } \Omega \times (0,T)$, where $\partial j$ is a sub-differential of a continuous convex function $j$. Under some conditions on $j$ and the parameters in the equations, we obtain several results on the existence of global solutions, uniqueness, nonexistence and propagation of regularity. Under nominal assumptions on the parameters we establish the existence of global generalized solutions. With further restrictions on the parameters we prove the existence and uniqueness of a global weak solution. In addition, we obtain a result on the nonexistence of global weak solutions to the equation whenever the exponent $p$ is greater than the critical value $k+m$, and the initial energy is negative. We also address the issue of propagation of regularity. Specifically, under some restriction on the parameters, we prove that solutions that correspond to any regular initial data such that $u_0\in H^2(\Omega)\cap H^1_0(\Omega)$, $u_1 \in H^1_0(\Omega)$ are indeed strong solutions.


References [Enhancements On Off] (What's this?)

  • 1. R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975. MR 0450957 (56:9247)
  • 2. K. Agre and M.A. Rammaha, Global solutions to boundary value problems for a nonlinear wave equation in high space dimensions, Differential $\&$ Integral Equations 14(11) (2001), 1315-1331.MR 1859608 (2002h:35190)
  • 3. V. Barbu, Nonlinear Differential Equations in Banach Spaces, Nordhoff, 1976.MR 0390843 (52:11666)
  • 4. Dang Dinh Ang and A. Pham Ngoc Dinh, Mixed problem for some semi-linear wave equation with a nonhomogeneous condition, Nonlinear Analysis. Theory, Methods $\&$ Applications 12 (1988), 581-592.MR 0945666 (89h:35207)
  • 5. J. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford (2) 28 (1977), 473-486.MR 0473484 (57:13150)
  • 6. V. Georgiev and G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations 109 (1994), 295-308. MR 1273304 (95b:35141)
  • 7. R.T. Glassey, Blow-up theorems for nonlinear wave equations, Math. Z. 132 (1973), 183-203. MR 0340799 (49:5549)
  • 8. P. Grisvard, Caractérisation de quelques espaces d' interpolation, Arch. Rat. Mech. Anal. 25 (1967), 40-63. MR 0213864 (35:4718)
  • 9. P. Grisvard, Équations différentielles abstraites, Ann. Sci. École Norm. Sup. 2(4) (1969), 311-395.MR 0270209 (42:5101)
  • 10. A. Haraux Nonlinear Evolution Equations-Global Behaviour of Solutions, Springer Verlag, 1981. MR 0610796 (83d:47066)
  • 11. K. Jörgens, Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen, Math. Z. 77 (1961), 295-308. MR 0130462 (24:A323)
  • 12. H. Koch and I. Lasiecka, Hadamard wellposedness of weak solutions in nonlinear dynamic elasticity-full Von Karman systems, Evolution Equations, Semigroups and Functional Analysis, vol 50, Birkhauser, pp. 197-211, 2002. MR 1944164 (2003j:35199)
  • 13. I. Lasiecka and J. Ong, Global solvability and uniform decays of solutions to quasilinear equations with nonlinear boundary dissipation, Communications in PDE's, vol. 24, pp. 2069-2107, 1999. MR 1720766 (2001c:35154)
  • 14. I. Lasiecka, J.L. Lions and R. Triggiani, Nonhomogeneous boundary value problem for second order hyperbolic operators, J. Math. Pures et Appl. 65 (1986), 149-192. MR 0867669 (88c:35092)
  • 15. H.A. Levine, Instability and nonexistence of global solutions of nonlinear wave equations of the form $Pu_{tt} = Au + {\mathcal F}(u)$, Trans. Amer. Math. Soc. 192 (1974), 1-21. MR 0344697 (49:9436)
  • 16. H.A. Levine and J. Serrin, Global nonexistence theorems for quasilinear evolution equations with dissipation, Arch. Rat. Mech. Anal. 137 (1997), 341-361. MR 1463799 (99b:34110)
  • 17. H.A. Levine, S.R. Park, and J.M. Serrin, Global existence and nonexistence theorems for quasilinear evolution equations of formally parabolic type, J. Differential Equations 142 (1998), 212-229. MR 1492883 (99b:35089)
  • 18. H.A. Levine, S.R. Park, and J.M. Serrin, Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation J. Math. Anal. Appl. 228 (1998), 181-205. MR 1659905 (99k:35124)
  • 19. J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I, II, Springer-Verlag, New York-Heidelberg-Berlin, 1972. MR 0350177 (50:2670); MR 0350178 (50:2671)
  • 20. J.L. Lions and W.A. Strauss, Some non-linear evolution equations, Bull. Soc. Math. France 93 (1965), 43-96. MR 0199519 (33:7663)
  • 21. L.E. Payne and D. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel Math. J. 22 (1981), 273-303. MR 0402291 (53:6112)
  • 22. D.R. Pitts and M.A. Rammaha, Global existence and non-existence theorems for nonlinear wave equations, Indiana University Math. Journal 51(6) (2002), 1479-1509. MR 1948457 (2003j:35219)
  • 23. P. Pucci and J. Serrin, Global nonexistence for abstract evolution equations with positive initial energy, J. Differential Equations 150 (1998), 203-214. MR 1660250 (2000a:34119)
  • 24. M.A. Rammaha and T.A. Strei, Global existence and nonexistence for nonlinear wave equations with damping and source terms, Trans. Amer. Math. Soc. 354(9) (2002), 3621-3637. MR 1911514 (2003f:35214)
  • 25. R. Seeley, Interpolation in $L^P$ with boundary conditions, Stud. Math. XLIV (1972), 47-60. MR 0315432 (47:3981)
  • 26. I. E. Segal, Non-linear semigroups, Annals of Math. 78 (1963), 339-364. MR 0152908 (27:2879)
  • 27. J. Serrin, G. Todorova, E. Vitillaro, Existence for a nonlinear wave equation with damping and source terms, Differential Integral Equations 16(1) (2003), 13-50. MR 1948871 (2003j:35221)
  • 28. J. Simon, Compact sets in the space $L_p(0,T, B)$. Annali Mat. Pura et Applic. 148 (1987), 65-96. MR 0916688 (89c:46055)
  • 29. R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, 1984. MR 0769654 (86m:76003)
  • 30. G. Todorova, Cauchy problem for nonlinear wave equations with nonlinear damping and source terms, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), 191-196. MR 1646932 (99e:35154)
  • 31. G. Todorova, Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms, Nonlinear Anal. 41 (2000), 891-905. MR 1764026 (2001c:35160)
  • 32. H. Tsutsumi, On solutions of semilinear differential equations in a Hilbert space, Math. Japonicea 17 (1972), 173-193.MR 0355247 (50:7723)
  • 33. G.F. Webb, Existence and asymptotic behavior for a strongly damped nonlinear wave equation, Can. J. Math. 32 (1980), 631-643.MR 0586981 (81i:35116)
  • 34. E. Zeidler, Nonlinear Functional Analysis and its Applications. Springer Verlag, 1986.MR 0816732 (87f:47083)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35L05, 35L20, 58J45

Retrieve articles in all journals with MSC (2000): 35L05, 35L20, 58J45


Additional Information

Viorel Barbu
Affiliation: Department of Mathematics, University “Al. J. Cuza", 6600 Iasi, Romania
Email: vb41@uaic.ro

Irena Lasiecka
Affiliation: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22904-4137
Email: il2v@virginia.edu

Mohammad A. Rammaha
Affiliation: Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0130
Email: rammaha@math.unl.edu

DOI: https://doi.org/10.1090/S0002-9947-05-03880-8
Keywords: Wave equations, damping and source terms, generalized solutions, weak solutions, blow-up of solutions, sub-differentials, energy estimates.
Received by editor(s): March 31, 2003
Published electronically: March 1, 2005
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society