FIXED POINT INDEX IN SYMMETRIC PRODUCTS

JOSÉ M. SALAZAR

Abstract. Let U be an open subset of a locally compact metric ANR X and let $f : U \to X$ be a continuous map. In this paper we study the fixed point index of the map that f induces in the n-symmetric product of X, $F_n(X)$. This index can detect the existence of periodic orbits of period $\leq n$ of f, and it can be used to obtain the Euler characteristic of the n-symmetric product of a manifold X, $\chi(F_n(X))$. We compute $\chi(F_n(X))$ for all orientable compact surfaces without boundary.

1. Introduction

Let X be a locally compact metric ANR, $f : U \subset X \to X$ a semidynamical system and $K \subset U$ a compact isolated invariant set with respect to f. In this paper we construct the fixed point index of the map that f induces in the spaces $F_n(X)$ of the non-empty finite subsets of X with at most n elements, endowed with the Hausdorff metric. These spaces were defined in 1931 by Borsuk and Ulam, in [3], with the name of n-symmetric product of X. They studied some topological properties which X induces in $F_n(X)$ and topological properties of the space $F_n([0,1])$.

Our fixed point index detects the existence of periodic orbits of f in K of period less than or equal to n.

Let 2^X be the hyperspace of all non-empty compact subsets of X endowed with the Hausdorff metric d_H, defined by

$$d_H(C,D) = \inf\{\epsilon > 0 : C \subset B(D,\epsilon) \text{ and } D \subset B(C,\epsilon)\},$$

and let $C_n(X) \subset 2^X$ be the hyperspace of all non-empty compact subsets of X having at most n connected components. Our study will be harder than the analysis of the fixed point indices constructed in [23] for the hyperspaces 2^X and $C_n(X)$. The difficulties follow from the fact that the topological structure of $F_n(X)$ is more complicated than that of 2^X and $C_n(X)$.

In Section 2 we prove that our construction is consistent and we show the most important properties. We also compute the index for $K = \{p\}$ a non-attracting and non-repelling fixed point of a local homeomorphism f of \mathbb{R}^2.

If f is an orientation-preserving local homeomorphism of the plane and $\{p\}$ is a fixed point of f that is an isolated invariant set which is not an attractor nor
a repeller, Le Calvez and Yoccoz proved, in \[14\], that there exist integers \(r, q \geq 1 \) such that the fixed point index

\[
i_{\mathbb{R}^2}(f^k, p) = \begin{cases}
1 - rq & \text{if } k \in r\mathbb{N}, \\
1 & \text{if } k \notin r\mathbb{N}.
\end{cases}
\]

In the above setting we will show that the fixed point index of the map that \(f \) induces in \(F_n(\mathbb{R}^2) \) at \(\{p\} \) is

\[
\frac{\sum_{j=1}^{n} i_{\mathbb{R}^2}(f^j, p)}{n}
\]

for every \(n \leq r \). We will give the proof of this result in Section 4.

In Section 3 we give techniques for computing the Euler characteristic of \(F_n(X) \), for \(X \) a finite dimensional manifold.

Sometimes the spaces \(F_n(X) \) are topologically equivalent to convex subsets of a euclidean space. In this case our results have similarities with the computations given in \[7\].

Although many authors have considered the study of the topological structure of the spaces \(F_n(X) \), the topological characterizations are exceptional. Borsuk and Ulam, in \[3\], proved that \(F_n([0,1]) \simeq [0,1]^n \) for \(n \leq 3 \). Borsuk, in \[2\], claimed that \(F_3(S^1) \simeq S^1 \times S^2 \) but Bott, in \[4\], showed that \(F_3(S^1) \simeq S^1 \). Molski, in \[18\], saw that \(F_2([0,1]^2) \simeq [0,1]^3 \). In the same direction we have the work of Schori, \[26\], where there is a characterization of spaces of the type \(F_n([0,1]^n) \), obtained by using suitable equivalence relations. Likewise we have some results about the topological properties of the symmetric products. In \[8\] it is proved that \(\dim(F_n([0,1])) = n \) for all \(n \) and that \(F_n([0,1]) \) cannot be embedded in \(\mathbb{R}^n \) for \(n > 3 \). Likewise, in \[15\], it is shown that \(F_n([0,1]^2) \) and \(F_2([0,1]^n) \) cannot be embedded in \(\mathbb{R}^{2n} \) for \(n \geq 3 \).

Wu, in \[27\], proved that, for \(n \) odd, \(F_{n}(S^1) \) has the homology of \(S^n \) and, for \(n \) even, \(H^0(F_n(S^1)) = H^{n-1}(F_n(S^1)) = \mathbb{Z} \) and \(H^i(F_n(S^1)) = 0 \) if \(i \neq 0, n - 1 \). Schori, in \[26\], showed that for a 2-manifold \(M \), \(F_2(M) \) is a 4-manifold. In \[12\], Illanes saw that if \(X \) is a locally connected normal space then \(F_n(X) \) is unicoherent for \(n \geq 3 \). Macías proved in \[15\] that if \(X \) is a continuum then \(F_n(X) \) is unicoherent for \(n \geq 3 \). He proves that \(\bar{H}^1(F_n(X), \mathbb{Z}) = 0 \).

In this paper we provide techniques which allow us to compute the Euler characteristics of the \(n \)-symmetric products of finite dimensional manifolds. Specifically, this is the aim of Section 3, where we make the explicit computation for \(X \) an orientable compact surface without boundary.

In a final remark we suggest the possibility of using our techniques to study the dynamics of certain hyperbolic dynamical systems, such as the G-horseshoe.

2. Definitions and Preliminary Results

From now on, \(X \) will denote a locally compact, metric ANR. Let \(U \subset X \) be an open set. By a semidynamical system we mean a locally defined continuous map \(f : U \to X \).

We say that a function \(\sigma : \mathbb{Z} \to X \) is a solution to \(f \) through \(x \) in \(N \subset U \) if \(f(\sigma(i)) = \sigma(i + 1) \) for all \(i \in \mathbb{Z} \), \(\sigma(0) = x \) and \(\sigma(i) \in N \) for all \(i \in \mathbb{Z} \). The invariant part of \(N \), \(\text{Inv}(N, f) \), is defined as the set of all \(x \in N \) that admit a solution to \(f \) through \(x \) in \(N \).
A compact set $K \subset U$ is invariant if $f(K) = K$. An invariant compact set K is isolated with respect to f if there exists a compact neighborhood N of K such that $Inv(N, f) = K$. The neighborhood N is called an isolating neighborhood of K.

The n-symmetric product of X, $F_n(X)$, is the closed subspace of 2^X, endowed with the Hausdorff metric, consisting of all non-empty subsets of X with at most n points.

A semidynamical system $f : U \rightarrow X$ induces in a natural way another one, $F_n(f) : F_n(U) \rightarrow F_n(X)$.

Let $K \subset U$ be a compact isolated invariant set and let N be any isolating neighborhood of K. Consider an open set W such that $K \subset W \subset N$. Take $F_n(f)|_{F_n(W)} : F_n(W) \rightarrow F_n(X)$. It is clear that $Fix(F_n(f)|_{F_n(W)}) \subset F_n(K)$; then $Fix(F_n(f)|_{F_n(W)})$ is a compact subset of $F_n(W)$. On the other hand, $F_n(f)|_{F_n(W)}$ is a compact map because it admits an obvious extension to $F_n(N)$.

The set $F_n(W)$ is an open subset of $F_n(X)$ and, since X is an ANR, $F_n(X)$ is an ANR for all $n \in \mathbb{N}$ ([19]).

Then, $i_{F_n(X)}(F_n(f)|_{F_n(W)}, F_n(W))$, the fixed point index of $F_n(f)|_{F_n(W)}$ in $F_n(W)$, is well defined. For information about the fixed point index theory, the reader is referred to [9], [20], [21], and [11].

It would be interesting to study the fixed point index in the so-called n-symmetric products, $SP_n(X)$, constructed as the quotient of X^n by the action of the group of permutations of n elements. Let us observe that $F_n(X) = SP_n(X)$ if $n \leq 2$. One can expect a better additive behavior of this fixed point index than in the case of $F_n(X)$. In this sense Maslih and Rallis, in [16], [17] and [22], constructed certain indices for maps $X \rightarrow SP_n(X)$. For more information about these spaces and their relation with algebraic topology, see [1].

Definition 1. We define the fixed n-finite set index of the pair (K, f) as

$$I_{X}^{F_n}(K, f) = i_{F_n(X)}(F_n(f)|_{F_n(W)}, F_n(W)).$$

The condition that K be isolated is sufficient, but not necessary, to guarantee the consistency of this fixed point index.

Remark 1. From the excision property of the fixed point index we have that $I_{X}^{F_n}(K, f)$ does not depend on the choice of the isolating neighborhood N of K and the open set W.

Remark 2. The spaces $F_n(X)$ are not growth hyperspaces of X (see [6]). A compactum B can be locally connected and $F_n(B) \notin$ ANR. So the techniques of [23] for computing the fixed point index in hyperspaces will not be useful in the case of $F_n(X)$.

The main properties of our index follow immediately from the corresponding properties of the fixed point index. They are stated in the following propositions.

Proposition 1 (Ważewski property). $I_{X}^{F_n}(K, f) \neq 0$ implies that $K \supset Fix(F_n(f)|_{F_n(W)}) \neq 0$.

So there exists a periodic orbit of f in K of period $\leq n$.

Proposition 2 (Particular cases of the additivity property). Let K be a compact isolated invariant set. If K is the disjoint union of two compact isolated invariant sets K_1 and K_2, then

$$I_{X}^{F_i}(K, f) = I_{X}^{F_i}(K_1, f) + I_{X}^{F_i}(K_2, f)$$
and
\[I_X^{F_2}(K, f) = I_X^{F_2}(K_1, f) + I_X^{F_2}(K_2, f) + I_X^{F_3}(K_1, f)I_X^{F_3}(K_2, f). \]

The proof of the second equality follows from the fact that \(F_2(U_1 \cup U_2) \) is homeomorphic to the disjoint union \(F_2(U_1) \cap F_2(U_2) \cap (F_1(U_1) \times F_1(U_2)) \) for \(U_1, U_2 \) disjoint open neighborhoods of \(K_1 \) and \(K_2 \) respectively.

Proposition 3 (Commutativity property). Let \(X, Y \) be locally compact metric ANRs with \(U, V \) open subsets of \(X \) and \(Y \) respectively. Let
\[
\varphi : U \to Y, \\
\psi : V \to X
\]
be locally defined maps. Consider \(f = \psi \circ \varphi \) and \(g = \varphi \circ \psi \). If \(K \subset X \) is a compact isolated invariant set with respect to \(f \), then \(\varphi(K) \) is a compact isolated invariant set with respect to \(g \) and \(I_X^{F_n}(K, f) = I_Y^{F_n}(\varphi(K), g) \).

Proposition 4 (Homotopy invariance property). Let \(f : U \times \Lambda \to X \) be a map such that \(U \) is an open subset of \(X \) and \(\Lambda \subset \mathbb{R} \) is a compact interval. Assume that \(N \) is an isolating neighborhood for each map \(f_\lambda : U \to X \). Then \(I_X^{F_n}(\text{Inv}(N, f_\lambda), f_\lambda) \) does not depend on \(\lambda \in \Lambda \).

Let us consider a local homeomorphism of the plane, \(f \), with \(K = \{ p \} \) a non-attracting and non-repelling fixed point. The next results allow us to relate the indices of the iterations of \(f \) and the corresponding indices in the symmetric product.

Theorem 1 ([24]). Let \(f : U \subset \mathbb{R}^2 \to \mathbb{R}^2 \) be a local homeomorphism with \(p \in U \) a non-attracting and non-repelling fixed point of \(f \) such that \(\{ p \} \) is an isolated invariant set. Then there are a disc \(D \), containing a neighborhood \(V \) of \(p \), a finite subset \(\{ q_1, \ldots, q_m \} \subset D \) and a map \(\overline{f} : D \to D \) such that \(\overline{f}|_V = f|_V \), \(\overline{f}(\{ q_1, \ldots, q_m \}) \subset \{ q_1, \ldots, q_m \} \), and for every \(k \in \mathbb{N} \), \(\text{Fix}(\overline{f})^k \subset \{ p, q_1, \ldots, q_m \} \).

Moreover,

a) (Le Calvez-Yoccoz, [14]). If \(f \) is orientation-preserving, then
\[i_{\mathbb{R}^2}(f^k, p) = \begin{cases} 1 - rq & \text{if } k \in r\mathbb{N}, \\ 1 & \text{if } k \notin r\mathbb{N}, \end{cases} \]
where \(k \in \mathbb{N} \), \(q \) is the number of periodic orbits of \(\overline{f} \) (excluding \(p \)) and \(r \) is their period.

b) If \(f \) is orientation-reversing, then there are integers \(\delta \in \{ 0, 1, 2 \} \) and \(q \) such that
\[i_{\mathbb{R}^2}(f^k, p) = \begin{cases} 1 - \delta & \text{if } k \text{ is odd,} \\ 1 - \delta - 2q & \text{if } k \text{ is even,} \end{cases} \]
where \(q \) is the number of orbits of period 2 and \(\delta \) is the number of fixed points of \(\overline{f} \) in \(\{ q_1, \ldots, q_m \} \), and there is no other orbit of \(\overline{f} \) in \(\{ q_1, \ldots, q_m \} \).

If \(R \) is a finite set of \(r \) elements, let
\[C_s = \text{Card}(\{ S \subset R : \text{Card}(S) = s \}). \]
A consequence of the above theorem is the following proposition. The reader can find its proof in Section 4.
Let \(f : U \subset \mathbb{R}^2 \to \mathbb{R}^2 \) be a homeomorphism, with \(p \in U \) a non-attracting and non-repelling fixed point of \(f \) such that \(\{p\} \) is an isolated invariant set.

a) \(f \) is orientation-preserving, \(q \) is the number of periodic orbits of \(f \) in \(\{q_1, \ldots, q_m\} \) and \(r \) is their period, then for every \(n \in \mathbb{N} \)

\[
1 = \sum_{1 \leq j r \leq n} C_j^q + \sum_{0 \leq j r < n} C_j^q I_D^{f_n^{q_j}}(\{p\}, \mathcal{F}).
\]

b) \(f \) is orientation-reversing, \(q \) the number of period-two orbits of \(f \) in \(\{q_1, \ldots, q_m\} \) and \(q' \leq 2 \) the number of fixed points of \(f \) in \(\{q_1, \ldots, q_m\} \), then for every \(n \in \mathbb{N} \)

\[
1 = \sum_{1 \leq 2 j + j' \leq n} C_j^q C_{j'}^{q'} + \sum_{0 \leq 2 j + j' < n} C_j^q C_{j'}^{q'} I_D^{f_n^{-(2j+j')}}(\{p\}, \mathcal{F}).
\]

Remark 3. In case a) of the above proposition, since \(\mathcal{F} \) is locally constant in \(\{q_1, \ldots, q_m\} \) (see [21]), we have

\[
I_D^{f_n}(\{p\}, \mathcal{F}) = \frac{\sum_{j=1}^n i_{\mathbb{Z}}(f^j, p)}{n} = \begin{cases} 1 & \text{if } n < r, \\ 1 - q & \text{if } n = r. \end{cases}
\]

Moreover, \(I_D^{f_n}(\{p\}, \mathcal{F}) = I_D^{f_n+1}(\{p\}, \mathcal{F}) \) for every \(n \in (kr, (k+1)r) \).

3. THE EULER CHARACTERISTIC OF THE \(n \)-SYMMETRIC PRODUCT OF A MANIFOLD

The aim of this section is to develop techniques which allow us to compute the Euler characteristic of the \(n \)-symmetric product of a finite dimensional manifold \(X \). We will restrict ourselves to the case when \(X \) is an orientable, compact surface without boundary. This setting will provide us with techniques to study the general case.

If we choose an adequate dynamical system (homeomorphism) \(F : X \to X \) \((F \simeq id) \), the Euler characteristic of \(F_n(X) \) is

\[
\chi(F_n(X)) = \Lambda(F_n(id)) = \Lambda(F_n(F)) = i_{F_n(X)}(F_n(F), F_n(X)),
\]

and, if \(F \) is such that the number of its periodic orbits of period \(\leq n \) is finite, by the additivity property, we only have to compute a finite number of indices \(i_{F_n(X)}(F_n(F), \bigcup_{j=1}^r \overline{p_j}) \) for \(\overline{p_j} \) periodic orbits of \(F \) of period \(p_j \) with \(\sum_{j=1}^r p_j \leq n \). The above fixed point indices, denoted by \(i_n(F, \bigcup_{j=1}^r \overline{p_j}) \), are defined in small enough neighborhoods, in \(F_n(X) \), of the isolated fixed points \(\bigcup_{j=1}^r \overline{p_j} \).

Note that if \(f : X \to X \) is a diffeomorphism of a manifold \(X \) of dimension \(m \) with \(p \) a hyperbolic fixed point for \(f \), then by the Grobman-Hartman theorem (see [10]) we can reduce the study of \(I_X^F(\{p\}, f) \) to the linear case \(I_{R^m}^F(\{0\}, Df(p)) \).

Let \(U \) be an open neighborhood of \(\{0\} \) in \(\mathbb{R}^m \) and let \(f : U \subset \mathbb{R}^m \to \mathbb{R}^m \) be a linear map. Assume that \(K = \{0\} \) is a compact isolated invariant set. The study of the index \(I_{R^m}^F(\{0\}, f) \) gives information which allows us to calculate \(\chi(F_n(X)) \) for a compact manifold \(X \).

Let us denote by \(D(\lambda_1, \ldots, \lambda_m) \) the diagonal \(m \times m \) matrix with \(\lambda_1, \ldots, \lambda_m \) on the diagonal.
The only linear cases which we will need here are given in the next proposition:

Proposition 6.

\[
I^{F_n}_{\mathbb{R}^m}(\{0\}, D(0, \ldots, 0)) = 1
\]

and

\[
I^{F_n}_{\mathbb{R}^m}(\{0\}, D(2, \ldots, 2)) = \begin{cases}
1 & \text{if } m \text{ is even}, \\
-1 & \text{if } m \text{ and } n \text{ are odd}, \\
0 & \text{if } m \text{ is odd and } n \text{ is even}.
\end{cases}
\]

The first equality is trivial, and the second one is proved in the Appendix.

The next theorem provides a complete study of \(I^{F_n}_{\mathbb{R}^m}(\{0\}, f)\) for a linear map and 0 a hyperbolic fixed point. We give an outline of the proof in the Appendix (see [25] for a complete proof).

Theorem 2. Let \(f : U \subset \mathbb{R}^m \to \mathbb{R}^m\) be a linear map with \(K = \{0\}\) a compact isolated invariant set. Consider the set of the real eigenvalues (repeated) which have modulus greater than 1, \(\{\lambda_1, \ldots, \lambda_r\}\).

Let \(r_2\) be the number of eigenvalues greater than 1, and \(r_{-2}\) the number of eigenvalues smaller than \(-1\). Of course \(r = r_2 + r_{-2}\). Then,

\[
I^{F_n}_{\mathbb{R}^m}(\{0\}, f) = \begin{cases}
\text{if } r_2 \text{ is odd and } r_{-2} \text{ is even}, \\
I^{F_n}_{\mathbb{R}^m}(\{0\}, D(2)) = \begin{cases}
0 & \text{if } n \text{ is even}, \\
-1 & \text{if } n \text{ is odd};
\end{cases} \\
\text{if } r_2 \text{ is even and } r_{-2} \text{ is odd}, \\
I^{F_n}_{\mathbb{R}^m}(\{0\}, D(-2)) = \begin{cases}
0 & \text{if } n \text{ is even}, \\
(-1)^k & \text{if } n = 2k + 1;
\end{cases} \\
\text{if } r_2 \text{ is odd and } r_{-2} \text{ is odd}, \\
I^{F_n}_{\mathbb{R}^m}(\{0\}, D(2, -2)) = \begin{cases}
1 & \text{if } n \text{ is even}, \\
-1 & \text{if } n \text{ is odd};
\end{cases} \\
\text{if } r_2 \text{ is even and } r_{-2} \text{ is even}, \\
I^{F_n}_{\mathbb{R}^m}(\{0\}, D(0, \ldots, 0)) = 1.
\end{cases}
\]

From now on, we study \(\chi(F_n(X))\) for \(X\) an orientable, compact surface without boundary.

In the next proposition we compute \(\chi(F_n(S^k))\).

Proposition 7. The Euler characteristic \(\chi(F_n(S^k))\) of the \(n\)-symmetric products of \(S^k\) is

\[
\chi(F_n(S^{2k+1})) = 0
\]

for all \(n \in \mathbb{N}\), and

\[
\chi(F_n(S^{2k})) = \begin{cases}
2 & \text{if } n = 1, \\
3 & \text{if } n \geq 2.
\end{cases}
\]

Proof. Consider the dynamical system \(J : S^k \to S^k\), shown in Figure 1.

We have \(J \simeq id\), and there are two hyperbolic fixed points, a repeller \(p\) and an attractor \(q\).

We have

\[
\chi(F_n(S^k)) = \Lambda(F_n(J)) = I_{S^k}^{F_n}(S^k, J) = i_n(J, p) + i_n(J, q) + i_n(J, \{p, q\}).
\]
Let us consider a small enough open neighborhood of \(q \), \(U_n(q) \), in \(F_n(S^k) \). Since \(q \) is an attractor, we can construct a homotopy \(H : cl(U_n(q)) \times I \to F_n(S^k) \) such that \(H_0 = F_n(J) \) and \(H_1 \equiv q \) and \(H(\bar{x}, t) \neq \bar{x} \quad \forall (\bar{x}, t) \in \partial(U_n(q)) \times I \). Then, by the homotopy property of the fixed point index, it is obvious that

\[
i_n(J, q) = i_{F_n(S^k)}(H_0, U_n(q)) = i_{F_n(S^k)}(H_1, U_n(q)) = 1.
\]

The next step is to prove that \(i_n(J, \{ p, q \}) = i_{n-1}(J, p) \). Given the open balls \(V_1 = B(p, \epsilon) \) and \(V_2 = B(q, \epsilon) \), we define the open neighborhood of the point \(\{ p, q \} \in F_n(S^k) \),

\[
U_n(\{ p, q \}) = \{ \bar{x} \in F_n(S^k) : \bar{x} \subset \bigcup V_i \text{ and } \bar{x} \cap V_i \neq \emptyset \text{ for all } i = 1, 2 \}.
\]

Given \(\bar{x} = \{ x_1, \ldots, x_s, x_{s+1}, \ldots, x_t \} \in U_n(\{ p, q \}) \), with \(\{ x_1, \ldots, x_s \} \subset V_1 \) and \(\{ x_{s+1}, \ldots, x_t \} \subset V_2 \), we define the continuous map

\[
F : U_n(\{ p, q \}) \to F_{n-1}(S^k)
\]
as \(F(\{ x_1, \ldots, x_t \}) = \{ J(x_1), \ldots, J(x_s) \} \).

In the same way we consider the continuous map

\[
G : U_{n-1}(p) \to F_n(S^k)
\]
defined as \(G(\{ x_1, \ldots, x_t \}) = \{ x_1, \ldots, x_t, q \} \).

Now, we take the compositions \(F \circ G : U_{n-1}(p) \to F_{n-1}(S^k) \) and \(G \circ F : F^{-1}(U_{n-1}(p)) \to F_n(S^k) \). It is obvious that \(F \circ G = F_{n-1}(J) \). On the other hand,

\[
(G \circ F)(\{ x_1, \ldots, x_t \}) = \{ J(x_1), \ldots, J(x_s), q \},
\]
and it is not difficult to construct a homotopy

\[
H : cl(F^{-1}(U_{n-1}(p))) \times I \to F_n(S^k)
\]
such that \(H_0 = F_n(J) \) and \(H_1 = G \circ F \), with

\[
H(\bar{x}, t) \neq \bar{x} \quad \forall (\bar{x}, t) \in \partial(F^{-1}(U_{n-1}(p))) \times I.
\]

Then, using the commutativity and the homotopy properties of the fixed point index, we have that

\[
i_n(J, \{ p, q \}) = i_{F_n(S^k)}(F_n(J), U_n(\{ p, q \})) = i_{F_n(S^k)}(G \circ F, F^{-1}(U_{n-1}(p)))
\]

\[
= i_{F_{n-1}(S^k)}(F \circ G, U_{n-1}(p)) = i_{F_{n-1}(S^k)}(F_{n-1}(J), U_{n-1}(p)) = i_{n-1}(J, p).
\]
Then \(\chi(F_n(S^k)) = i_n(J, p) + 1 + i_{n-1}(J, p) \), and from Proposition 6 and the Grobman-Hartman theorem, we have

\[
i_n(J, p) = \begin{cases}
1 & \text{if } k \text{ is even,} \\
-1 & \text{if } k \text{ and } n \text{ are odd,} \\
0 & \text{if } k \text{ is odd and } n \text{ is even.}
\end{cases}
\]

Now the result follows automatically. \(\square \)

Remark 4. Let us notice that we can construct a map \(F_k : S^{2k+1} \to S^{2k+1} \) homotopic to the identity without periodic points. The equality \(\chi(F_n(S^{2k+1})) = 0 \) follows from this fact. We define \(F_k \) as the restriction to \(S^{2k+1} \subset C^{k+1} \) of the map \((z_1, \ldots, z_{k+1}) \mapsto (e^{2i\pi\alpha}z_1, \ldots, e^{2i\pi\alpha}z_{k+1})\), where \(\alpha \in \mathbb{R} \setminus \mathbb{Q} \).

We can also use this map to compute \(\chi(F_n(S^{2k+2})) \). In fact, let us consider \(g : [-1, 1] \to [-1, 1] \) with \(g(x) = 2x \) if \(|x| \leq 1/2\), and \(g(x) = \frac{x}{|x|} \) if \(1/2 \leq |x| \leq 1 \). The map

\[
F_k \times g : S^{2k+1} \times [-1, 1] \to S^{2k+1} \times [-1, 1]
\]

defines a continuous map on the sphere \(S^{2k+2} \) obtained by identifying each sphere \(S^{2k+1} \times \{\epsilon\} \), \(\epsilon \in \{-1, 1\} \), to a point. The only periodic orbits are the two fixed points, where the map is locally constant.

The same ideas can be applied to the torus \(T \), to prove that \(\chi(F_n(T)) = 0 \).

Let us compute the Euler characteristic of the \(n \)-symmetric product of the compact oriented surfaces of genus \(k \), \(\chi(F_n(M_k)) \).

Proposition 8. The Euler characteristic of \(F_n(M_k) \), with \(k \geq 2 \), is

\[
\chi(F_n(M_k)) = \sum_{j=1}^{n} (-1)^{j} C_{2k-3+j}^{j}.
\]

If \(k = 1 \), then \(\chi(F_n(T)) = 0 \).

Proof. Let us consider the dynamical system \(J : M_k \to M_k \) shown in Figure 2.
We have that \(J \simeq id \), with two fixed points \(p \) and \(q \). The point \(q \) is a source and the map \(J|_{M_k \setminus \{q\}} \) is conjugated to the product
\[
L_{2k} \times f : Y_{2k} \times [0,1) \to Y_{2k} \times [0,1),
\]
where \(f(x) = x^2 \) and \(L_{2k} : Y_{2k} \to Y_{2k} \) is the dynamical system defined on the pointed union of \(2k \) loops \(Y_{2k} \) shown in Figure 3.

The Euler characteristic of \(F_n(M_k) \) is
\[
\chi(F_n(M_k)) = \Lambda(F_n(J)) = \Gamma_{M_k}(M_k, J) = i_n(J, p) + i_n(J, q) + i_n(J, \{p, q\}).
\]

By Proposition 6 and the Grobman-Hartman theorem, we have \(i_n(J, q) = 1 \).

On the other hand, let us see that \(i_n(J, \{p, q\}) = i_{n-1}(J, p) \). We consider the continuous maps
\[
F : U_n(\{p, q\}) \to F_{n-1}(M_k) \text{ and } G : U_{n-1}(p) \to F_n(M_k)
\]
defined as in the proof of Proposition 7, and a homotopy
\[
H : cl(F^{-1}(U_{n-1}(p))) \times I \to F_n(M_k)
\]
such that \(H_0 = F_n(J) \) and \(H_1 = G \circ F \), with
\[
H(\bar{x}, t) \neq \bar{x} \text{ for all } (\bar{x}, t) \in \partial(F^{-1}(U_{n-1}(p))) \times I
\]
(for a construction of the homotopy \(H \), see the proof of Proposition 6 in the Appendix).

From the commutativity and the homotopy invariance properties of the fixed point index, we have \(i_n(J, \{p, q\}) = i_{n-1}(J, p) \), and therefore
\[
\chi(F_n(M_k)) = i_n(J, p) + 1 + i_{n-1}(J, p).
\]

It only remains to compute \(i_n(J, p) \). Since \(J|_{M_k \setminus \{q\}} \) is conjugated to \(L_{2k} \times f \), then \(i_n(J, p) = i_n(L_{2k} \times f, (p', 0)) = i_n(L_{2k}, p') \). The last equality follows from the homotopy and commutativity properties of the fixed point index.

Let us define the dynamical systems \(H_k, H'_k : Z_k \to Z_k \) with \(Z_k \) the union of \(k \) arcs connected by the endpoints (see Figure 4).

Given a fixed point \(\bar{a} \) of \(F_n(H_k) \), we denote \(i_{F_n(Z_k)}(F_n(H_k), \bar{a}) = i_n(H_k, \bar{a}) \).

Let us prove that \(i_n(L_{2k}, p') = i_n(H_{2k}, p) \). Given the map \(g : [0,1] \to [0,1] \) with \(g(x) = 2x \) if \(|x| \leq 1/2 \), and \(g(x) = \frac{x}{|x|} \) if \(1/2 \leq |x| \leq 1 \), the restriction of \(L_{2k} \) to

\[\text{Figure 3.}\]
each loop can be considered as a map of the type
\[g : [0, 1]/(0 \equiv 1) \to [0, 1]/(0 \equiv 1). \]

We can consider the dynamical system \(L_{2k} : Y_{2k} \to Y_{2k} \) as a identification in \(H_{2k} : Z_{2k} \to Z_{2k} \) of the points \(p \) and \(q \) to a point \(p' \). If \(x \in Z_{2k} \), we call \([x] \in Y_{2k} \) the corresponding point obtained by the identification.

Given a small enough neighborhood \(U_n(p') \) of \(p' \) in \(F_n(Y_{2k}) \), let
\[\bar{x} = \{[x_1], \ldots, [x_r], [x_{r+1}], \ldots, [x_s]\} \in U_n(p') \]
with \(\{[x_1], \ldots, [x_r]\} \) the points of \(\bar{x} \) contained in the local repelling part of \(p' \) in \(Y_{2k} \).

Then let us consider the map \(F : U_n(p') \subset F_n(Y_{2k}) \to Z_{2k} \) defined as
\[F(\{[x_1], \ldots, [x_r], [x_{r+1}], \ldots, [x_s]\}) = \{H_{2k}(x_1), \ldots, H_{2k}(x_r), p\} \]
If \(r = s \), the point \(p \) does not appear in the image of \(F \).

Let \(G : U_n(p) \subset F_n(Z_{2k}) \to F_n(Y_{2k}) \) be the map defined as
\[G(\{x_1, \ldots, x_r\}) = \{[x_1], \ldots, [x_r]\} \]
By the commutativity property of the fixed point index applied to \(F \) and \(G \) we obtain that \(i_n(L_{2k}, p') = i_n(H_{2k}, p) \). Therefore
\[i_n(J, p) = i_n(H_{2k}, p), \]
and we only have to compute \(i_n(H_{2k}, p) \).

If \(n \geq 2 \), we have
\[I_{Z_{2k}}^{F_n}(Z_k, H_k) = i_n(H_k, p) + i_n(H_k, q) + i_n(H_k, \{p, q\}) \]
\[= i_n(H_k, p) + 1 + i_{n-1}(H_k, p). \]

The equality \(i_n(H_k, q) = 1 \) is a consequence of the fact that \(q \) is an attractor, and \(i_n(H_k, \{p, q\}) = i_{n-1}(H_k, p) \) follows again from the homotopy invariance and the commutativity properties of the fixed point index.

Using similar arguments it is easy to see that
\[I_{Z_{2k}}^{F_n}(Z_k, H'_k) = i_n(H_{k-1}, p). \]
Since $H_k \simeq H'_k$, then $\iota^E_n(Z_k, H_k) = \iota^E_n(Z_k, H'_k)$ and
\[
(1) \quad i_n(H_{k-1}, p) = i_n(H_k, p) + 1 + i_{n-1}(H_k, p).
\]
This formula allows us to compute $i_n(H_k, p)$ in a recurrent way (it is easy to see that $i_n(H_1, p) = 0$ for all n). Our aim is to obtain $i_n(H_k, p)$ in an explicit expression by an induction argument.

Let us prove that $i_n(H_k, p) - i_{n-1}(H_k, p) = (-1)^nC^{k+n-2}_n$.

Let $n = 2$ and $k = 1$. Then, since $i_n(H_1, p) = 0$, we have $i_2(H_1, p) - i_1(H_1, p) = (-1)^2C^1_1 = 0$. Let us suppose that
\[
i_n(H_k, p) - i_{n-1}(H_k, p) = (-1)^nC^{k+n-2}_n
\]
for all $n \geq 2, k \geq 1$ with $n+k \leq m_0$, and consider n, k with $n+k = m_0 + 1$. Then, using (1), we have
\[
i_n(H_{k-1}, p) = i_n(H_k, p) + i_{n-1}(H_k, p) + 1,
\]
\[-i_{n-1}(H_{k-1}, p) = -i_{n-1}(H_k, p) - i_{n-2}(H_k, p) - 1.
\]
It follows that
\[
i_n(H_k, p) - i_{n-1}(H_k, p)
\]= i_n(H_{k-1}, p) - i_{n-1}(H_{k-1}, p) + i_{n-2}(H_k, p) - i_{n-1}(H_k, p)
\]= (-1)^nC^{k+n-3}_n + (-1)^nC^{k+n-3}_{n-1} = (-1)^nC^{k+n-2}_n,
\]
and the result is proved.

In the same way, it follows that $i_1(H_k, p) = -(k-1)$, and then
\[
i_n(H_k, p) = \sum_{j=1}^{n}(-1)^jC^{k-2+j}_j
\]
and
\[
\chi(F_n(M_k)) = i_n(H_{2k}, p) + i_{n-1}(H_{2k}, p) + 1
\]= i_n(H_{2k-1}, p) = \sum_{j=1}^{n}(-1)^jC^{2k-3+j}_j.
\]

\[\square\]

Remark 5. Given a manifold X and a continuous map $F : X \to X$, we can obtain, under certain conditions of hyperbolicity, information about the dynamics of F by studying the fixed point indices $\lambda^E_n(\Inv(X, F), F)$. Certainly, there are other techniques which allow us to study this, but it seemed interesting for us to present this alternative method.

Example. Dynamics of the G-horseshoe. If we want to study the periodic orbits of the G-horseshoe with our techniques, let us consider the dynamical system $F : C \to C$ given by the extended G-horseshoe of Figure 5. We are interested in detecting the periodic orbits of F on I^2 (the unique periodic orbit out of I^2 is a fixed point). Let us consider the continuous map $g : \Pi \circ F|S^1 : S^1 \to S^1$ defined as the composition of $F|S^1$ with the projection $\Pi : C \to S^1$, where S^1 is the interior circle of C. It is not difficult to see, by the homotopy invariance and the commutativity properties of the fixed point index, that
\[
(2) \quad \lambda^E_n(\Inv(I^2, F), F) = \lambda^E_n(\Inv(I, g), g).
\]
Let us observe that \(g|_I \) is an expansion, and \(F|_{I^2} \) is a contraction in the vertical direction and an expansion in the horizontal one. Then, given \(n \) fixed, the number of periodic orbits of period \(\leq n \) for \(g \) and \(F \) is finite, and the fixed points of \(F_n(g) \) and \(F_n(F) \) are isolated.

It is not hard to prove that if \(\bar{\alpha} \) is a periodic orbit of period \(n \) of \(F|_{I^2} \), then \(i_{F_n(C)}(F_n(F), \bar{\alpha}) = -1 \) (the same fact occurs with \(g|_I \)). Then we can see, using (2) and an induction argument, that the number of periodic orbits of all periods of \(F|_{I^2} \) is the same as in the case of \(g|_I \).

By the commutativity and the homotopy properties of the fixed point index,

\[
I^{F_n}_C(\text{Inv}(C, F), F) = I^{F_n}_{S^1}(\text{Inv}(S^1, g), g) = I^{F_n}_{S^1}(\text{Inv}(S^1, f), f),
\]

where \(f : S^1 \to S^1 \) is the doubling angle map. A careful observation of \(f \) and \(g \) allows us to see that, although \(f \) has one fixed point and \(g|_I \) has two (repelling) fixed points, the remaining periodic orbits are the same in both dynamical systems.

Since the set \(\{ x \in S^1 : f^n(x) = x \} \) has \(2^n - 1 \) points, then the set \(\{ x \in I^2 : F^n(x) = x \} \) has \(2^n \) points. So, we have a characterization of the periodic orbits of the G-horseshoe.

4. Appendix. Proofs

Proof of Proposition 5. Let us see the proof of a) (the proof of b) is analogous).
Since \(D \) is an AR, \(1 = I^{F_n}_D(D, \mathcal{J}) \).

Let us consider the point \(\bar{\alpha}(l) = \bar{\alpha}_1 \cup \cdots \cup \bar{\alpha}_t \in F_n(D) \) with \(\bar{\alpha}_i = \{ q_{i_1}, \ldots, q_{i_r} \} \) a periodic orbit of \(\mathcal{J} \) in \(\{ q_1, \ldots, q_m \} \) for all \(i = 1, \ldots, t \).

\(\text{Per}(\mathcal{J}) \) is the set of periodic orbits of \(\mathcal{J} \) in \(\{ q_1, \ldots, q_m \} \). Let us denote

\[
i_{F_n(D)}(F_n(\mathcal{J}), \bar{\alpha}(j)) = i_n(\mathcal{J}, \bar{\alpha}(j)).
\]
From the additivity property of the fixed point index for ANRs, we have

\[1 = I_{D}^{F_{n}}(D, \overline{f}) = \sum_{\alpha(j) \in \text{Per}(\overline{f}), j \leq n} i_{n}(\overline{f}, \alpha(j)) \]

\[+ \sum_{\alpha(j) \in \text{Per}(\overline{f}), j < n} i_{n}(\overline{f}, p \cup \alpha(j)) + i_{n}(\overline{f}, p). \]

Since \(\overline{f} \) is locally constant in each \(q_{i} \), see [24], we have

\[i_{n}(\overline{f}, \alpha(j)) = 1 \]

for all \(\alpha(j) \subset \text{Per}(\overline{f}), j \leq n \).

Let \(\alpha(j) \) be fixed with \(j r < n \). We prove that

\[i_{n}(\overline{f}, p \cup \alpha(j)) = i_{n-jr}(\overline{f}, p). \]

Let \(U_{n}(p \cup \alpha(j)) \) be a small enough neighborhood in \(F_{n}(D) \) of the point \(p \cup \alpha(j) \), and let \(\bar{x} \in U_{n}(p \cup \alpha(j)) \) with \(\bar{x}_{p} = \bar{x} \cap B(p, \epsilon) \) for \(\epsilon \) small enough. The set \(\bar{x}_{p} = \{x_{1}, \ldots, x_{l}\} \) is such that \(1 \leq l \leq n - jr \).

Let \(F : U_{n}(p \cup \alpha(j)) \to F_{n-jr}(D) \) and \(G : U_{n-jr}(p) \to F_{n}(D) \) be the continuous maps

\[F(\bar{x}) = (\overline{f}(x_{1}), \ldots, \overline{f}(x_{l})), \quad G(\bar{x}) = \overline{\alpha(j)} \cup \bar{x}. \]

The map \(F \circ G : U_{n-jr}(p) \to F_{n-jr}(D) \) is such that

\[(F \circ G)(\bar{x}) = F_{n-jr}(\overline{f})(\bar{x}). \]

On the other hand, since \(\overline{f} \) is locally constant in each \(q_{i} \in \{q_{1}, \ldots, q_{m}\} \), the map

\[G \circ F : F^{-1}(U_{n-jr}(p)) \to F_{n}(D) \]

is such that

\[(G \circ F)(\bar{x}) = F_{n}(\overline{f})(\bar{x}). \]

From the commutativity property of the fixed point index for ANRs we have the equality

\[i_{n}(\overline{f}, p \cup \alpha(j)) = i_{n-jr}(\overline{f}, p). \]

The proof of case a) is finished. \(\square \)

Proof of Proposition 6. Let us see that \(I_{x_{m}}^{F_{n}}(\{0\}, 2Id) = 1 \) for \(m = 2 \) (the case of \(m \) even will be analogous).

Let \(U_{0} = B(0, 1) \) be an open neighborhood of \(\{0\} \) and let \(H : F_{n}(\text{cl}(U_{0})) \times I \to F_{n}(\mathbb{R}^{2}) \) be the homotopy

\[H(\{x_{1}, \ldots, x_{r}\}, t) \]

\[= \begin{cases} \{ A(t)(2x_{1}), \ldots, A(t)(2x_{r}) \} & \text{if } t \in [0, 1/2], \\ \{ 2(1-t)A(1/2)(2x_{1}), \ldots, 2(1-t)A(1/2)(2x_{r}) \} & \text{if } t \in [1/2, 1], \end{cases} \]

with

\[A(t) = \begin{pmatrix} \cos\left(\frac{2\pi}{n+1}2t\right) & \sin\left(\frac{2\pi}{n+1}2t\right) \\ -\sin\left(\frac{2\pi}{n+1}2t\right) & \cos\left(\frac{2\pi}{n+1}2t\right) \end{pmatrix}. \]

We consider \(x_{i} \neq x_{j} \) if \(i \neq j \). It is obvious that \(r \leq n \).

The continuity of \(H \) is clear, and it is not hard to see that \(H(\bar{x}, t) \neq \bar{x} \) for all \((\bar{x}, t) \in \partial(F_{n}(U_{0})) \times I \). Since \(H_{0} = F_{n}(2Id) \) and \(H_{1} = F_{n}(D(0, 0)) \), we have proved the result for \(m = 2 \).
Let us see that
\[I_{\mathbb{R}^m}^{F_n} \{0\}, 2Id) = \begin{cases} 0 & \text{if } n \text{ is even}, \\ -1 & \text{if } n \text{ is odd}, \end{cases} \]
for \textit{m} odd. We will prove the result for \textit{m} = 1 (the general case is easy to obtain by combining the cases \textit{m} = 1 and \textit{m} even).

Let us consider the map \(g : J \to J \) with \(g(x) = x^{1/3} \) and \(J = [-1, 1] \). The only periodic orbits are the fixed points \{-1, 0, 1\}.

Since \(F_n(J) \) is an absolute retract, we have
\[I_{\mathbb{R}^n}^{F_n}(J, g) = \Lambda(F_n(g)) = \Lambda(F_n(id)) = 1. \]

Let us denote \(i_{F_n,J}(F_n(g), \bar{\alpha}) = i_n(g, \bar{\alpha}) \) for \(\bar{\alpha} \in \text{Fix}(F_n(g)) \). Then
\[1 = I_{\mathbb{R}^n}^{F_n}(J, g) = \sum_{\bar{\alpha} \subset \{-1, 0, 1\}} i_n(g, \bar{\alpha}). \]

Using the commutativity and the homotopy invariance properties of the fixed point index as in the proof of Proposition 7, it is not difficult to see that
\[i_n(g, 1) = i_n(g, -1) = i_n(g, \{-1, 1\}) = 1, \]
\[i_n(g, \{-1, 0\}) = i_n(g, \{0, 1\}) = i_{n-1}(g, 0), \]
and
\[i_n(g, \{-1, 0, 1\}) = i_{n-2}(g, 0). \]

Then, for \textit{n} > 2,
\[1 = I_{\mathbb{R}^n}^{F_n}(J, g) = i_n(g, 0) + 2i_{n-1}(g, 0) + i_{n-2}(g, 0) + 3. \]

Since \(I_{\mathbb{R}^n}^{F_n}(\{0\}, 2Id) = i_n(g, 0) \), by an induction argument on the last formula we finish the proof. \(\square \)

\textbf{Proof of Theorem 2.} Since \{0\} is an isolated invariant set, the eigenvalues \(\{\lambda_1, \ldots, \lambda_m\} \) of \(f \) have modulus different from 1. The first equality of the theorem, which reduces the study of the fixed point index in \(\mathbb{R}^m \) to the cases of \(\mathbb{R} \) and \(\mathbb{R}^2 \), is easy to prove by using the techniques employed in the proof of Proposition 6.

On the other hand, the computation of \(I_{\mathbb{R}^n}^{F_n}(\{0\}, D(2)) \) follows from studying the dynamical system \(g_1 : J \to J \) defined as \(g_1(x) = x^{1/3} \) with \(J = [-1, 1] \). In fact,
\[1 = \chi(F_n(J)) = I_{\mathbb{R}^n}^{F_n}(J, g_1) = \sum_{\bar{\alpha} \subset \{-1, 0, 1\}} i_n(g_1, \bar{\alpha}), \]
and we compute \(I_{\mathbb{R}^n}^{F_n}(\{0\}, D(2)) = i_n(g_1, 0) \) from the above equality. In an analogous way we have \(I_{\mathbb{R}^n}^{F_n}(\{0\}, D(-2)) \) with \(g_2(x) = -x^{1/3} \).

It only remains to compute \(I_{\mathbb{R}^n}^{F_n}(\{0\}, D(2,-2)) \). Let us consider the dynamical systems \(F = s \circ f : S^2 \to S^2 \) and \(G = s \circ g : S^2 \to S^2 \), where \(s : S^2 \to S^2 \) is a symmetry with respect to the plane \(\{z = 0\} \) and \(f, g : S^2 \to S^2 \) are the dynamical systems shown in Figure 6.

For the dynamical system given by \(F \), the fixed point \(p \) is of type \(D(2,-2) \) and \(q \) is an attractor. The fixed points \(a \) of \(G \) are of type \(D(2,-1/2) \) and \(D(-2,1/2) \) respectively. The pairs \(\{c_1, c_2\} \) and \(\{d_1, d_2\} \) are attracting periodic orbits of period 2.
We have $F \cong G$. Therefore, if $n \geq 2$,
\[
I_{S^2}^F(S^2, G) = I_{S^2}^F(S^2, F) = i_n(F, p) + i_n(F, q) + i_n(F, \{p, q\}) \\
= i_n(F, p) + 1 + i_{n-1}(F, p).
\]

Let us prove the equality $I_{S^2}^F(S^2, G) = 1$. By the additivity property of the fixed point index,
\[
I_{S^2}^F(S^2, G) = \sum_{\bar{\alpha} \subset \{a, b, \{c_1, c_2\}, \{d_1, d_2\}\}} i_n(G, \bar{\alpha}).
\]

We have that $i_n(G, a) = I_{R^2}^F(\{0\}, D(2))$ and $i_n(G, b) = I_{R^2}^F(\{0\}, D(-2))$. The only difficulty is to compute $i_n(G, \{a, b\})$.

Let $J_1 = J_2 = [-1,1]$. We denote by $X = J_1 \cup J_2$ the disjoint union of the intervals. Let us consider the map $h : X \to X$, defined as $h(x) = x^{1/3}$ if $x \in J_1$ and $h(x) = -x^{1/3}$ if $x \in J_2$.

Since $\chi(F_1(X)) = I_{\bar{X}}(X, h) = 2$ and $\chi(F_n(X)) = I_{\bar{X}}(X, h) = 3$ if $n > 1$, we can prove that
\[
i_n(h, \{0, 0\}) = \begin{cases}
-1 & \text{if } n = 4k + 2, \\
1 & \text{if } n = 4k + 3, \\
0 & \text{otherwise},
\end{cases}
\]
for $k \in \mathbb{N}$.

Since $i_n(h, \{0, 0\}) = i_n(G, \{a, b\})$, the equality $I_{S^2}^F(S^2, G) = 1$ follows from (3).

Then $i_n(F, p) + i_{n-1}(F, p) = 0$. Since $i_1(F, p) = -1$, we obtain the value of $I_{R^2}^F(\{0\}, D(2, -2)) = i_n(F, p)$, and the proof is finished. \[\square\]

Acknowledgements

I wish to thank Professor F. R. Ruiz del Portal for many valuable comments, and the referee for his or her careful reading of the manuscript and suggestions.

References

Departamento de Matemáticas, Universidad de Alcalá, Alcalá de Henares, Madrid 28871, Spain

E-mail address: josem.salazar@uah.es