Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Tangent algebraic subvarieties of vector fields

Author: Juan B. Sancho de Salas
Journal: Trans. Amer. Math. Soc. 357 (2005), 3509-3523
MSC (2000): Primary 14L30
Published electronically: October 7, 2004
MathSciNet review: 2146636
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An algebraic commutative group $G$ is associated to any vector field $D$ on a complete algebraic variety $X$. The group $G$ acts on $X$ and its orbits are the minimal subvarieties of $X$ which are tangent to $D$. This group is computed in the case of a vector field on $\mathbb{P}_n$.

References [Enhancements On Off] (What's this?)

  • 1. C. CHEVALLEY, Théorie des Groupes de Lie, Hermann, Paris (1968).
  • 2. M. DEMAZURE & P. GABRIEL Groupes Algébriques, Masson & North-Holland, Amsterdam (1970). MR 46:1800
  • 3. R. FARO & J.B. SANCHO, Rational first integrals of linear differential equations, (preprint).
  • 4. A. GROTHENDIECK, Fondements de la Géométrie Algébrique, Séminaire Bourbaki 1957-62, Secrétariat Math., Paris (1962). MR 26:3566
  • 5. A. GROTHENDIECK & M. DEMAZURE, Schémas en Groupes I, Lecture Notes in Math. 151, exp. V, Springer-Verlag, Heidelberg (1970). MR 43:223a
  • 6. R. HARTSHORNE, Algebraic Geometry, Grad. Texts in Math. 52, Springer-Verlag, New York (1977). MR 57:3116
  • 7. J.P. JOUANOLOU, Equations de Pfaff algébriques, Lecture Notes in Math. 708, Springer-Verlag, New York (1979). MR 81k:14008
  • 8. A.R. MAGID, Lectures on Differential Galois Theory, Univ. Lecture Series 7, Amer. Math. Soc., Providence, R.I. (1994). MR 95j:12008
  • 9. H. MATSUMURA & F. OORT, Representability of Group Functors, and Automorphisms of Algebraic Schemes, Inventiones Math. 4 (1967) 1-25. MR 36:181
  • 10. M. VAN DER PUT & M.F. SINGER, Galois Theory of Linear Differential Equations, Grundlehren der mathematischen Wissenschaften, vol. 328, Springer-Verlag (2003).
  • 11. M. ROSENLICHT, A remark on Quotient Spaces, Ana. da Acad. Brasiliera de Ciencias 35 (1963) 25-28. MR 30:2009
  • 12. M. ROSENLICHT, Some Basic Theorems on Algebraic Groups, Amer. J. Math. 78 (1956) 401-443. MR 18:514a
  • 13. C. SANCHO, Grupos Algebraicos y Teoria de Invariantes, Univ. Autónoma de Mexico (2002). MR 2003i:20085

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14L30

Retrieve articles in all journals with MSC (2000): 14L30

Additional Information

Juan B. Sancho de Salas
Affiliation: Departamento de Matematicas, Universidad de Extremadura, Av. de Elvas s/n, Badajoz 06071, Spain

Received by editor(s): February 14, 2003
Received by editor(s) in revised form: November 19, 2003
Published electronically: October 7, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society