Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Depth and cohomological connectivity in modular invariant theory


Authors: Peter Fleischmann, Gregor Kemper and R. James Shank
Journal: Trans. Amer. Math. Soc. 357 (2005), 3605-3621
MSC (2000): Primary 13A50, 20J06, 13C15
Published electronically: November 4, 2004
MathSciNet review: 2146641
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G$ be a finite group acting linearly on a finite-dimensional vector space $V$ over a field $K$ of characteristic $p$. Assume that $p$ divides the order of $G$ so that $V$ is a modular representation and let $P$ be a Sylow $p$-subgroup for $G$. Define the cohomological connectivity of the symmetric algebra $S(V^*)$ to be the smallest positive integer $m$ such that $H^m(G,S(V^*))\not=0$. We show that $\min\left\{\dim_K(V^P) + m + 1,\dim_K(V)\right\}$is a lower bound for the depth of $S(V^*)^G$. We characterize those representations for which the lower bound is sharp and give several examples of representations satisfying the criterion. In particular, we show that if $G$ is $p$-nilpotent and $P$ is cyclic, then, for any modular representation, the depth of $S(V^*)^G$is $\min\left\{\dim_K(V^P) + 2,\dim_K(V)\right\}$.


References [Enhancements On Off] (What's this?)

  • 1. D. J. Benson, Representations and cohomology. I, Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, Cambridge, 1991. Basic representation theory of finite groups and associative algebras. MR 1110581
  • 2. Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
  • 3. H. E. A. Campbell, I. P. Hughes, G. Kemper, R. J. Shank, and D. L. Wehlau, Depth of modular invariant rings, Transform. Groups 5 (2000), no. 1, 21–34. MR 1745709, 10.1007/BF01237176
  • 4. Geir Ellingsrud and Tor Skjelbred, Profondeur d’anneaux d’invariants en caractéristique 𝑝, Compositio Math. 41 (1980), no. 2, 233–244 (French). MR 581583
  • 5. Leonard Evens, The cohomology of groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1144017
  • 6. Peter Fleischmann, Relative trace ideals and Cohen-Macaulay quotients of modular invariant rings, Computational methods for representations of groups and algebras (Essen, 1997) Progr. Math., vol. 173, Birkhäuser, Basel, 1999, pp. 211–233. MR 1714612
  • 7. Peter Fleischmann, R. James Shank, The Relative Trace Ideal and the Depth of Modular Rings of Invariants, Arch. der Math. 80 (2003), 347-353.
  • 8. B. Huppert, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703
  • 9. Gregor Kemper, On the Cohen-Macaulay Property of Modular Invariant Rings, J. of Algebra 215 (1999), 330-351. |MR2000d:13008
  • 10. Gregor Kemper, The depth of invariant rings and cohomology, J. Algebra 245 (2001), no. 2, 463–531. With an appendix by Kay Magaard. MR 1863889, 10.1006/jabr.2001.8840
  • 11. P. Landrock, Finite group algebras and their modules, London Mathematical Society Lecture Note Series, vol. 84, Cambridge University Press, Cambridge, 1983. MR 737910
  • 12. M. Lorenz and J. Pathak, On Cohen-Macaulay rings of invariants, J. Algebra 245 (2001), no. 1, 247–264. MR 1868191, 10.1006/jabr.2001.8900
  • 13. Larry Smith, Polynomial invariants of finite groups, Research Notes in Mathematics, vol. 6, A K Peters, Ltd., Wellesley, MA, 1995. MR 1328644

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 13A50, 20J06, 13C15

Retrieve articles in all journals with MSC (2000): 13A50, 20J06, 13C15


Additional Information

Peter Fleischmann
Affiliation: Institute of Mathematics and Statistics, University of Kent, Canterbury, CT2 7NF, United Kingdom
Email: P.Fleischmann@kent.ac.uk

Gregor Kemper
Affiliation: Zentrum Mathematik - M11, Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany
Email: kemper@ma.tum.de

R. James Shank
Affiliation: Institute of Mathematics and Statistics, University of Kent, Canterbury, CT2 7NF, United Kingdom
Email: R.J.Shank@kent.ac.uk

DOI: http://dx.doi.org/10.1090/S0002-9947-04-03591-3
Received by editor(s): July 17, 2003
Received by editor(s) in revised form: December 17, 2003
Published electronically: November 4, 2004
Additional Notes: This research was supported by EPSRC grant GR/R32055/01
Article copyright: © Copyright 2004 American Mathematical Society