Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Asymptotic properties of convolution operators and limits of triangular arrays on locally compact groups


Authors: Yves Guivarc'h and Riddhi Shah
Journal: Trans. Amer. Math. Soc. 357 (2005), 3683-3723
MSC (2000): Primary 60B15, 60F05, 60G50; Secondary 43A05, 22D25, 22D40
DOI: https://doi.org/10.1090/S0002-9947-05-03645-7
Published electronically: February 4, 2005
MathSciNet review: 2146645
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a locally compact group $G$ and a limiting measure $\mu$of a commutative infinitesimal triangular system (c.i.t.s.) $\Delta$of probability measures on $G$. We show, under some restrictions on $G$, $\mu$ or $\Delta$, that $\mu$ belongs to a continuous one-parameter convolution semigroup. In particular, this result is valid for symmetric c.i.t.s. $\Delta$ on any locally compact group $G$. It is also valid for a limiting measure $\mu$ which has `full' support on a Zariski connected $\mathbb{F}$-algebraic group $G$, where $\mathbb{F}$ is a local field, and any one of the following conditions is satisfied: (1) $G$ is a compact extension of a closed solvable normal subgroup, in particular, $G$ is amenable, (2) $\mu$ has finite one-moment or (3) $\mu$ has density and in case the characteristic of $\mathbb{F}$ is positive, the radical of $G$ is $\mathbb{F}$-defined. We also discuss the spectral radius of the convolution operator of a probability measure on a locally compact group $G$, we show that it is always positive for any probability measure on $G$, and it is also multiplicative in case of symmetric commuting measures.


References [Enhancements On Off] (What's this?)

  • [Be] Y. Benoist. Propriétés asymptotiques des groupes linéaires. Geom. Func. Anal. 7 (1997), 1-47. MR 98b:22010
  • [BC] C. Berg and J.P.R. Christensen. Sur la norme des opérateurs de convolution. Invent. Math. 23 (1974), 173-176. MR 49:3449
  • [Bo] A. Borel. Linear algebraic groups, 2nd enlarged edition. Springer (1991). MR 92d:20001
  • [Ca] H. Carnal. Deux théorèmes sur les groupes stochastiques compacts. Comm. Math. Helv. 40 (1966), 237-246. MR 33:8009
  • [DM] S. G. Dani and M. McCrudden. Embeddability of infinitely divisible distributions on linear Lie groups. Invent. Math. 110 (1992), 237-261. MR 94d:60010
  • [DSh] S. G. Dani and Riddhi Shah. Collapsible measures and concentration functions on Lie groups, Math. Proc. Camb. Phil. Soc. 122 (1997), 105-113. MR 98e:60015
  • [DeG] Y. Derriennic and Y. Guivarc'h. Théorème de renouvellement pour les groupes non moyennables. C. R. A. S., Paris 277 (1973), 613-616. MR 48:7332
  • [Fe] P. Feinsilver. Processes with independent increments on a Lie group. Trans. Amer. Math. Soc. 242 (1978), 73-121. MR 58:3063
  • [F] W. Feller. An Introduction to probability theory and its applications Vol. II. Wiley (1966). MR 35:1048
  • [Fu] H. Furstenberg. Boundary theory and stochastic processes on homogeneous spaces. Proc. Symp. Pure Math. 36 (1972), 193-229. MR 50:4815
  • [Ga] R. Gangolli. Isotropic infinitely divisible measures on symmetric spaces. Acta Math. 111 (1964), 213-246. MR 28:4557
  • [GoMa] I. Ya. Goldsheid and G. A. Margulis. Lyapunov exponents of a product of random matrices. Russian Math. Surveys 44 (1989), 11-71. MR 91j:60014
  • [Gr] U. Grenander. Probabilities on algebraic structures. Almquist and Wiksell. Stockholm-Göteberg-Uppsala (1963).
  • [G1] Y. Guivarc'h. Croissance polynomiale et périodes des fonctions harmoniques. Bull. S.M.F. 101 (1973), 333-379. MR 51:5841
  • [G2] Y. Guivarc'h. Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire. Astérisque 74 (1980), 47-98. MR 82g:60016
  • [G3] Y. Guivarc'h. Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire. Ergod. Th. Dyn. Syst. 10 (1990), 483-512. MR 92c:60011
  • [G4] Y. Guivarc'h. Limit theorems for random walks and products of random matrices. To appear in: Proceedings of the CIMPA-TIFR School on Probability Measures on Groups, Mumbai 2002. TIFR Studies in Mathematics series.
  • [GR1] Y. Guivarc'h and A. Raugi. Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence. Z. Wahr. Verw. Gebiete 69 (1985), 187-242. MR 86h:60126
  • [GR2] Y. Guivarc'h and A. Raugi. Products of random matrices and convergence theorems. In: Random Matrices (Kesten Cohen-Newmann Eds.) Contemporary Math. AMS 50 (1986), 31-54. MR 87m:60024
  • [H] H. Heyer. Probability measures on locally compact groups, Springer-Verlag, Berlin-Heidelberg (1977). MR 58:18648
  • [Ho] G. P. Hochschild. The structure of Lie groups. Holden-Day (1965). MR 34:7696
  • [Hu] G. A. Hunt. Semigroups of measures on Lie groups. Trans. Amer. Math. Soc. 81 (1956), 264-293. MR 18:54a
  • [JRoW] W. Jaworski, J. Rosenblatt and G. Willis, Concentration functions in locally compact groups. Math. Ann. 305 (1996), 673-691. MR 97k:43001
  • [Ke] D. G. Kendall. Delphic semigroups, infinitely divisible regenerative phenomena and the arithmetic of $p$-functions. Z. Wahr. Verw. Gebiete 9 (1968), 163-195. MR 37:5320
  • [KRut] M. G. Kre{\u{\i}}\kern.15emn and M. A. Rutman. Linear operators leaving invariant a cone in a Banach space. A.M.S. Transl. 26 (1950), 200-325. MR 12:341b
  • [L] P. Lévy. Processus stochastiques et mouvement brownien. Gauthier-Villars, (1948). MR 10:551a
  • [Ma] G. A. Margulis. Discrete subgroups of semisimple Lie groups. Ergebnisse der Math., Springer-Verlag (1991). MR 92h:22021
  • [M] M. McCrudden. Factors and roots of large measures on connected Lie groups, Math. Zeits. 177 (1981), 315-322. MR 82m:60014
  • [P] K. R. Parthasarathy. Probability measures on metric spaces. Academic Press, New York-London (1967). MR 37:2271
  • [PRaV] K. R. Parthasarathy, R. Ranga Rao and S. R. S. Varadhan. Probability distributions on locally compact abelian groups, Illinois J. Math. 7 (1963), 337-369. MR 32:8378
  • [Pr] G. Prasad. $\mathbb{R}$-regular elements in Zariski-dense subgroups. Quarterly J. Math. 45 (1994), 541-545. MR 96a:22022
  • [R] M. S. Raghunathan. A proof of Oseledec's multiplicative ergodic theorem. Israel J. Math. 32 (1979), 356-362. MR 81f:60016
  • [Ruz] I. Z. Ruzsa. Infinite divisibility. Adv. Math. 69 (1988), 115-132. MR 89g:60051
  • [RuzS] I. Z. Ruzsa and G. J. Szekely. Algebraic probability theory. Wiley (1988). MR 89j:60006
  • [Sh1] Riddhi Shah. Semistable measures and limit theorems on real and $p$-adic groups. Mh. Math. 115 (1993), 191-213. MR 95g:60013
  • [Sh2] Riddhi Shah. Limits of commutative triangular systems on real and $p$-adic groups. Math. Proc. of Camb. Phil. Soc 120 (1996), 181-192. MR 97e:60015
  • [Sh3] Riddhi Shah. The central limit problem on locally compact group. Israel J. Math. 110 (1999), 189-218. MR 2000m:60007
  • [Sh4] Riddhi Shah. Limits of commutative triangular systems on locally compact groups. Indian Academy of Sciences Proceeding (Math. Sci.) 111 (2001), 49-63. MR 2002b:60003
  • [Si] E. Siebert. Fourier analysis and limit theorems for convolution semigroups on a locally compact group. Adv. Math. 39 (1981), 111-154. MR 82h:60023
  • [StV] D. W. Stroock and S. R. S. Varadhan. Limit theorems for random walks on Lie groups. Sankhya Ser. A 35 (1973), no. 3, 277-294. MR 58:24457
  • [T1] J. Tits. Reductive groups over local fields. Proc. Sympos. Pure Math. 33 (1977), 29-69. MR 80h:20064
  • [T2] J. Tits. Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque. J. Reine Angew. Math. 247 (1971), 196-220. MR 43:3269
  • [W] D. F. Wehn. Probabilities on Lie groups. Proc. Nat. Acad. Sci. USA 48 (1962), 791-795. MR 27:3011

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 60B15, 60F05, 60G50, 43A05, 22D25, 22D40

Retrieve articles in all journals with MSC (2000): 60B15, 60F05, 60G50, 43A05, 22D25, 22D40


Additional Information

Yves Guivarc'h
Affiliation: IRMAR, Université de Rennes1, Campus de Beaulieu, 35042, Rennes Cedex, France
Email: yves.guivarch@univ-rennes1.fr

Riddhi Shah
Affiliation: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
Email: riddhi@math.tifr.res.in

DOI: https://doi.org/10.1090/S0002-9947-05-03645-7
Keywords: Infinitesimal triangular systems of measures, embeddable measures, spectrum of convolution operators, Lyapunov exponents, algebraic groups
Received by editor(s): July 30, 2003
Received by editor(s) in revised form: February 12, 2004
Published electronically: February 4, 2005
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society