Complex immersions in Kähler manifolds of positive holomorphic -Ricci curvature

Authors:
Fuquan Fang and Sérgio Mendonça

Journal:
Trans. Amer. Math. Soc. **357** (2005), 3725-3738

MSC (2000):
Primary 32Q15; Secondary 53C55

Published electronically:
March 25, 2005

MathSciNet review:
2146646

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The main purpose of this paper is to prove several connectedness theorems for complex immersions of closed manifolds in Kähler manifolds with positive holomorphic -Ricci curvature. In particular this generalizes the classical Lefschetz hyperplane section theorem for projective varieties. As an immediate geometric application we prove that a complex immersion of an -dimensional closed manifold in a simply connected closed Kähler -manifold with positive holomorphic -Ricci curvature is an embedding, provided that . This assertion for follows from the Fulton-Hansen theorem (1979).

**[AF]**Aldo Andreotti and Theodore Frankel,*The Lefschetz theorem on hyperplane sections*, Ann. of Math. (2)**69**(1959), 713–717. MR**0177422****[Ba]**W. Barth,*Transplanting cohomology classes in complex-projective space*, Amer. J. Math.**92**(1970), 951–967. MR**0287032****[FMR]**F. Fang; S. Mendonça; X. Rong,*A Connectedness principle in the geometry of positive curvature*, preprint, 2002, to appear in Comm. Analysis and Geometry.**[Fr]**Theodore Frankel,*Manifolds with positive curvature*, Pacific J. Math.**11**(1961), 165–174. MR**0123272****[Fu]**William Fulton,*On the topology of algebraic varieties*, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 15–46. MR**927947****[FH]**William Fulton and Johan Hansen,*A connectedness theorem for projective varieties, with applications to intersections and singularities of mappings*, Ann. of Math. (2)**110**(1979), no. 1, 159–166. MR**541334**, 10.2307/1971249**[FL]**William Fulton and Robert Lazarsfeld,*Connectivity and its applications in algebraic geometry*, Algebraic geometry (Chicago, Ill., 1980) Lecture Notes in Math., vol. 862, Springer, Berlin-New York, 1981, pp. 26–92. MR**644817****[GK]**Samuel I. Goldberg and Shoshichi Kobayashi,*Holomorphic bisectional curvature*, J. Differential Geometry**1**(1967), 225–233. MR**0227901****[GM]**Mark Goresky and Robert MacPherson,*Stratified Morse theory*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR**932724****[Gr]**Alfred Gray,*Nearly Kähler manifolds*, J. Differential Geometry**4**(1970), 283–309. MR**0267502****[G]**Phillip A. Griffiths,*Hermitian differential geometry, Chern classes, and positive vector bundles*, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 185–251. MR**0258070****[GR]**Karsten Grove,*Geodesics satisfying general boundary conditions*, Comment. Math. Helv.**48**(1973), 376–381. MR**0438386****[Gu]**Florêncio F. Guimarães,*The integral of the scalar curvature of complete manifolds without conjugate points*, J. Differential Geom.**36**(1992), no. 3, 651–662. MR**1189499****[KW]**Meeyoung Kim and Jon Wolfson,*Theorems of Barth-Lefschetz type on Kähler manifolds of non-negative bisectional curvature*, Forum Math.**15**(2003), no. 2, 261–273. MR**1956967**, 10.1515/form.2003.014**[Le]**S. Lefschetz,*L’analysis situs et la géométrie algébrique*, Gauthier-Villars, Paris, 1950 (French). MR**0033557****[Mi]**J. Milnor,*Morse theory*, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. MR**0163331****[Mo]**Shigefumi Mori,*Projective manifolds with ample tangent bundles*, Ann. of Math. (2)**110**(1979), no. 3, 593–606. MR**554387**, 10.2307/1971241**[MZ]**Sérgio Mendonça and Detang Zhou,*Curvature conditions for immersions of submanifolds and applications*, Compositio Math.**137**(2003), no. 2, 211–226. MR**1985004**, 10.1023/A:1023932008595**[Ok]**Christian Okonek,*Barth-Lefschetz theorems for singular spaces*, J. Reine Angew. Math.**374**(1987), 24–38. MR**876219**, 10.1515/crll.1987.374.24**[Or]**L. Ornea,*A theorem on non-negatively curved locally conformal Kaehler manifolds*, Rend. Mat. Appl. (7)**12**(1992), no. 1, 257–262 (English, with English and Italian summaries). MR**1186159****[SW]**Richard Schoen and Jon Wolfson,*Theorems of Barth-Lefschetz type and Morse theory on the space of paths*, Math. Z.**229**(1998), no. 1, 77–89. MR**1649314**, 10.1007/PL00004651**[Sh]**Zhong Min Shen,*On complete manifolds of nonnegative 𝑘th-Ricci curvature*, Trans. Amer. Math. Soc.**338**(1993), no. 1, 289–310. MR**1112548**, 10.1090/S0002-9947-1993-1112548-6**[SY]**Yum Tong Siu and Shing Tung Yau,*Compact Kähler manifolds of positive bisectional curvature*, Invent. Math.**59**(1980), no. 2, 189–204. MR**577360**, 10.1007/BF01390043**[So]**Andrew John Sommese,*Complex subspaces of homogeneous complex manifolds. II. Homotopy results*, Nagoya Math. J.**86**(1982), 101–129. MR**661221****[Wu]**H. Wu,*Manifolds of partially positive curvature*, Indiana Univ. Math. J.**36**(1987), no. 3, 525–548. MR**905609**, 10.1512/iumj.1987.36.36029

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
32Q15,
53C55

Retrieve articles in all journals with MSC (2000): 32Q15, 53C55

Additional Information

**Fuquan Fang**

Affiliation:
Nankai Institute of Mathematics, Nankai University, Tianjin 300071, People’s Republic of China

Email:
fuquanfang@eyou.com

**Sérgio Mendonça**

Affiliation:
DepartamentodeAnálise,\hskip1mm Universidade FederalFluminense (UFF), Niterói, 24020-140 RJ Brazil

Email:
sxmendonca@hotmail.com, mendonca@mat.uff.br

DOI:
https://doi.org/10.1090/S0002-9947-05-03675-5

Received by editor(s):
August 5, 2003

Received by editor(s) in revised form:
March 10, 2004

Published electronically:
March 25, 2005

Additional Notes:
The first author was supported by NSFC Grant 19741002, RFDP and the Qiu-Shi Foundation

Article copyright:
© Copyright 2005
American Mathematical Society