Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Harmonic calculus on fractals--A measure geometric approach II


Author: M. Zähle
Journal: Trans. Amer. Math. Soc. 357 (2005), 3407-3423
MSC (2000): Primary 28A80; Secondary 42B35, 47G30, 35P20
DOI: https://doi.org/10.1090/S0002-9947-05-03854-7
Published electronically: April 27, 2005
MathSciNet review: 2146630
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Riesz potentials of fractal measures $\mu$ in metric spaces and their inverses are introduced. They define self-adjoint operators in the Hilbert space $L_2(\mu)$ and the former are shown to be compact.

In the Euclidean case the corresponding spectral asymptotics are derived with Besov space methods. The inverses of the Riesz potentials are fractal pseudodifferential operators. For the order two operator the spectral dimension coincides with the Hausdorff dimension of the underlying fractal.


References [Enhancements On Off] (What's this?)

  • 1. D.R. Adams and L.I. Hedberg, Function spaces and potential theory, Springer 1996. MR 1411441 (97j:46024)
  • 2. M. Denker and H. Sato, Sierpinski gasket as a Martin boundary, I. Martin kernels, Potential. Anal. 14 (2001), 211-232. MR 1822915 (2002f:60139)
  • 3. G.A. Edgar, Integral, probability, and fractal measures, Springer 1998. MR 1484412 (99c:28024)
  • 4. K.J. Falconer, Semilinear PDEs on self-similar fractals, Commun. Math. Phys. 206 (1999), 235-245. MR 1736985 (2001a:28008)
  • 5. K.J. Falconer and J. Hu, Non-linear elliptical equations on the Sierpinski gasket, J. Math. Analysis Appl. 240 (1999), 552-573. MR 1731662 (2001a:35063)
  • 6. U. Freiberg, Maßgeometrische Laplaceoperatoren für fraktale Teilmengen der reellen Achse, Ph.D. thesis, Friedrich-Schiller University, Jena, 2000.
  • 7. U. Freiberg and M. Zähle, Harmonic calculus on fractals - A measure geometric approach. I, Potential Anal. 16 (2002), 265-277. MR 1885763 (2002k:28011)
  • 8. T. Fujita, A fractional dimension, self similarity and a generalized diffusion operator, Taniguchi Symp. PMMP, Katata (1985), 83-90. MR 0933819 (89m:47042)
  • 9. M. Fukushima, Y. Oshima and M. Takeda, Dirichlet forms and symmetric Markov processes, de Gruyter 1994. MR 1303354 (96f:60126)
  • 10. A. Jonsson, Besov spaces on closed substs of $\mathbb{R} ^n$, Trans. Amer. Math. Soc. 341 (1994), 335-370. MR 1132434 (94c:46065)
  • 11. A. Jonsson and H. Wallin, Function spaces on subsets of $\mathbb{R} ^n$, Math. Reports, Vol. 2, Acad. Publ., Harwood 1984. MR 0820626 (87f:46056)
  • 12. J. Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc. 335 (1993), 721-755. MR 1076617 (93d:39008)
  • 13. J. Kigami and M.L. Lapidus, Weyl's problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals, Commun. Math. Phys. 158 (1993), 93-125. MR 1243717 (94m:58225)
  • 14. K.S. Lau, Fractal measures and mean $p$-variations, J. Funct. Anal. 108 (1992), 427-457. MR 1176682 (93g:28007)
  • 15. J. Maly and U. Mosco, Remarks on measure-valued Lagrangians on homogeneous spaces, Ricerche di Mathematica, Vol. XLVIII (1999), Supplemento, 217-231. MR 1765686 (2002e:31005)
  • 16. V. Metz, Potential theory on the Sierpinski gasket, Math. Ann. 289 (1991), 207-231. MR 1092171 (92b:31008)
  • 17. U. Mosco, Dirichlet forms and self-similarity, In: Jost et. al. (eds.) New directions in Dirichlet forms, Cambridge International Press 1998. MR 1652280 (2000a:31011)
  • 18. B. Rubin, Fractional integrals and potentials, Addison Wesley, Longman, Essex, U.K. 1996. MR 1428214 (98h:42018)
  • 19. S.G. Samko, A.A. Kilbas and O.I. Marichov, Fractional integrals and derivatives, Theory and Applications, Gordon and Breach 1993. MR 1347689 (96d:26012)
  • 20. R.S. Strichartz, Self-similar measures and their Fourier transformation. I, Indiana Univ. Math. J. 39 (1990), 797-817. MR 1078738 (92k:42015)
  • 21. R.S. Strichartz, Taylor approximations on Sierpinski gasket type fractals, J. Functional Anal. 174 (2000), 76-127. MR 1761364 (2001i:31018)
  • 22. H. Triebel, Fractals and Spectra, Birkhäuser 1997. MR 1484417 (99b:46048)
  • 23. K. Yosida, Functional Analysis, Springer 1968. MR 0239384 (39:741)
  • 24. M. Zähle, Measure theoretic Laplace operators on fractals, Can. Math. Soc. Conf. Proc. 29, (2002), 625-631.MR 1803453 (2002b:28008)
  • 25. M. Zähle, Riesz potentials and Liouville operators on fractals, Potential Anal. 21 (2004), 193-208.MR 2058033 (2005a:28022)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 28A80, 42B35, 47G30, 35P20

Retrieve articles in all journals with MSC (2000): 28A80, 42B35, 47G30, 35P20


Additional Information

M. Zähle
Affiliation: Mathematical Institute, University of Jena, 07737 Jena, Germany
Email: zaehle@math.uni-jena.de

DOI: https://doi.org/10.1090/S0002-9947-05-03854-7
Keywords: Fractal set and measure, potential, pseudodifferential operator, Besov space, spectral asymptotics
Received by editor(s): October 4, 2000
Published electronically: April 27, 2005
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society