Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Quantum groups, differential calculi and the eigenvalues of the Laplacian


Authors: J. Kustermans, G. J. Murphy and L. Tuset
Journal: Trans. Amer. Math. Soc. 357 (2005), 4681-4717
MSC (2000): Primary 58B32, 58B34
DOI: https://doi.org/10.1090/S0002-9947-05-03971-1
Published electronically: June 29, 2005
MathSciNet review: 2165384
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study $*$-differential calculi over compact quantum groups in the sense of S.L. Woronowicz. Our principal results are the construction of a Hodge operator commuting with the Laplacian, the derivation of a corresponding Hodge decomposition of the calculus of forms, and, for Woronowicz' first calculus, the calculation of the eigenvalues of the Laplacian.


References [Enhancements On Off] (What's this?)

  • 1. E. ABE, Hopf Algebras, Cambridge University Press, Cambridge (1980). MR 0594432 (83a:16010)
  • 2. A. CONNES, Noncommutative Geometry, Academic Press, San Diego-New York (1994). MR 1303779 (95j:46063)
  • 3. K. SCHMÜDGEN, Commutator representations of covariant differential calculi on quantum groups, Lett. Math. Phys. 59 (2002), 95-106. MR 1894810 (2003d:58013)
  • 4. K. SCHMÜDGEN, Commutator representations of differential calculi on the quantum group $SU_q(2)$, J. Geom. Phys. 31 (1999), 241-264. MR 1711531 (2000h:58019)
  • 5. A.U. KLYMIK, K. SCHMÜDGEN, Quantum Groups and their Representations, Springer, Heidelberg-New York (1998). MR 1492989 (99f:17017)
  • 6. A. JAFFE, Quantum harmonic analysis and geometric invariants, Advances in Math. 143 (1999), 1-110. MR 1680658 (2000f:58064)
  • 7. J. KUSTERMANS, G.J. MURPHY, L. TUSET, Differential calculi over quantum groups and twisted cyclic cocycles, J. Geom. Phys. 44 (2003), 570-594. MR 1943179
  • 8. J. KUSTERMANS, L. TUSET, A survey of C*-algebraic quantum groups I, Irish Math. Soc. Bull. 43 (1999), 8-63. MR 1741102 (2001i:46090)
  • 9. I. HECKENBERGER, Hodge and Laplace-Beltrami operators for bicovariant differential calculi on quantum groups, Compositio Math. 123 (2000), 329-354. MR 1795294 (2001k:58011)
  • 10. I. HECKENBERGER, A. SCHÜLER, De Rham Cohomology and Hodge decomposition for Quantum Groups, Proc. London Math. Soc. (3) 83 (2001), 743-768. MR 1851089 (2003b:58008)
  • 11. G.J. MURPHY, L. TUSET, Compact quantum groups, preprint, National University of Ireland, Cork (1999).
  • 12. A. VAN DAELE, An algebraic framework for group duality, Advances in Math. 140 (1998), 323-366. MR 1658585 (2000g:16045)
  • 13. S.L. WORONOWICZ, Twisted $SU(2)$ group--an example of a non-commutative differential calculus, Publ. RIMS Kyoto Univ. 23 (1987), 117-181. MR 0890482 (88h:46130)
  • 14. S.L. WORONOWICZ, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613-665. MR 0901157 (88m:46079)
  • 15. S.L. WORONOWICZ, Compact quantum groups, Symétries quantiques (Les Houches) (1998), 845-884, North-Holland, Amsterdam. MR 1616348 (99m:46164)
  • 16. S.L. WORONOWICZ, Differential calculus on compact matrix pseudogroups (quantum groups), Commun. Math. Phys. 122 (1989), 125-170. MR 0994499 (90g:58010)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 58B32, 58B34

Retrieve articles in all journals with MSC (2000): 58B32, 58B34


Additional Information

J. Kustermans
Affiliation: Departement Wiskunde, KU Leuven, Celestijnenlaan 200B, 3000 Leuven, Belgium
Email: j.kustermans@skynet.be

G. J. Murphy
Affiliation: Department of Mathematics, National University of Ireland, Cork, Ireland
Email: g.j.murphy@ucc.ie

L. Tuset
Affiliation: Faculty of Engineering, University College, Oslo, Norway
Email: Lars.Tuset@iu.hio.no

DOI: https://doi.org/10.1090/S0002-9947-05-03971-1
Received by editor(s): January 23, 2001
Published electronically: June 29, 2005
Additional Notes: The first author was supported by the National Science Foundation of Flanders
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society