On the -theory and topological cyclic homology of smooth schemes over a discrete valuation ring

Authors:
Thomas Geisser and Lars Hesselholt

Journal:
Trans. Amer. Math. Soc. **358** (2006), 131-145

MSC (2000):
Primary 11G25; Secondary 19F27

DOI:
https://doi.org/10.1090/S0002-9947-04-03599-8

Published electronically:
December 28, 2004

MathSciNet review:
2171226

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that for a smooth and proper scheme over a henselian discrete valuation ring of mixed characteristic , the -adic étale -theory and -adic topological cyclic homology agree.

**1.**O. Gabber,*-theory of henselian local rings and henselian pairs*, Algebraic -theory, commutative algebra, and algebraic geometry (Santa Margherita Ligure, 1989), Contemp. Math., vol. 126, Amer. Math. Soc., Providence, RI, 1992, pp. 59-70. MR**93c:19005****2.**T. Geisser and L. Hesselholt,*Topological cyclic homology of schemes*, -theory (Seattle, 1997), Proc. Symp. Pure Math., vol. 67, 1999, pp. 41-87.MR**2001g:19003****3.**T. G. Goodwillie,*Calculus I: The first derivative of pseudoisotopy theory*, -theory**4**(1990), 1-27. MR**92m:57027****4.**-,*Calculus II: Analytic functors*, -theory**5**(1992), 295-332. MR**93i:55015****5.**L. Hesselholt,*Stable topological cyclic homology is topological Hochschild homology*, -theory (Strasbourg, 1992), Asterisque, vol. 226, 1994, pp. 175-192. MR**96b:19004****6.**L. Hesselholt and I. Madsen,*On the -theory of local fields*, Ann. of Math.**158**(2003), 1-113.**7.**J. P. May,*Simplicial objects in algebraic topology. Reprint of the 1967 original*, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992. MR**93m:55025****8.**R. McCarthy,*Relative algebraic -theory and topological cyclic homology*, Acta Math.**179**(1997), 197-222. MR**99e:19006****9.**I. A. Panin,*On a theorem of Hurewicz and -theory of complete discrete valuation rings*, Math. USSR Izvestiya**29**(1987), 119-131. MR**88a:18021****10.**A. A. Suslin,*Stability in algebraic -theory*, Algebraic -theory (Proceedings, Oberwolfach, 1980), Lecture Notes in Mathematics, vol. 966, Springer-Verlag, 1982, pp. 304-333. MR**85d:18011****11.**-,*On the -theory of local fields*, J. Pure Appl. Alg.**34**(1984), 304-318.MR**86d:18010****12.**R. W. Thomason,*Algebraic -theory and étale cohomology*, Ann. Scient. École Norm. Sup.**13**(1985), 437-552. MR**87k:14016**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
11G25,
19F27

Retrieve articles in all journals with MSC (2000): 11G25, 19F27

Additional Information

**Thomas Geisser**

Affiliation:
Department of Mathematics, University of Southern California, Los Angeles, California 90089

Email:
geisser@math.usc.edu

**Lars Hesselholt**

Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Email:
larsh@math.mit.edu

DOI:
https://doi.org/10.1090/S0002-9947-04-03599-8

Received by editor(s):
August 15, 2002

Received by editor(s) in revised form:
January 2, 2004

Published electronically:
December 28, 2004

Additional Notes:
Both authors were supported in part by the NSF and the Alfred P. Sloan Foundation. The first author received additional support from the JSPS

Article copyright:
© Copyright 2004
American Mathematical Society