The limiting absorption principle for the twodimensional inhomogeneous anisotropic elasticity system
Authors:
Gen Nakamura and JennNan Wang
Journal:
Trans. Amer. Math. Soc. 358 (2006), 147165
MSC (2000):
Primary 35J55, 74G25, 74G30; Secondary 74B05, 74E10
Published electronically:
December 28, 2004
MathSciNet review:
2171227
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this work we establish the limiting absorption principle for the twodimensional steadystate elasticity system in an inhomogeneous aniso tropic medium. We then use the limiting absorption principle to prove the existence of a radiation solution to the exterior Dirichlet or Neumann boundary value problems for such a system. In order to define the radiation solution, we need to impose certain appropriate radiation conditions at infinity. It should be remarked that even though in this paper we assume that the medium is homogeneous outside of a large domain, it still preserves anisotropy. Thus the classical Kupradze's radiation conditions for the isotropic system are not suitable in our problem and new radiation conditions are required. The uniqueness of the radiation solution plays a key role in establishing the limiting absorption principle. To prove the uniqueness of the radiation solution, we make use of the unique continuation property, which was recently obtained by the authors. The study of this work is motivated by related inverse problems in the anisotropic elasticity system. The existence and uniqueness of the radiation solution are fundamental questions in the investigation of inverse problems.
 1.
Dang
Ding Ang, Masaru
Ikehata, Dang
Duc Trong, and Masahiro
Yamamoto, Unique continuation for a stationary isotropic
Lamé system with variable coefficients, Comm. Partial
Differential Equations 23 (1998), no. 12,
371–385. MR 1608540
(98j:35049), http://dx.doi.org/10.1080/03605309808821349
 2.
Krzysztof
Chełmiński, The principle of limiting absorption in
elasticity, Bull. Polish Acad. Sci. Math. 41 (1993),
no. 1, 19–30. MR 1401881
(97j:35144)
 3.
B.
Dehman and L.
Robbiano, La propriété du prolongement unique pour un
système elliptique. Le système de Lamé, J. Math.
Pures Appl. (9) 72 (1993), no. 5, 475–492
(French). MR
1239100 (94h:35051)
 4.
G.
F. D. Duff, The Cauchy problem for elastic waves in an anistropic
medium, Philos. Trans. Roy. Soc. London Ser. A 252
(1960), 249–273. MR 0111293
(22 #2157)
 5.
American Mathematical Society Translations. Series 2, Vol. 47:
Thirteen papers on functional analysis and partial differential
equations, American Mathematical Society, Providence, R.I., 1965. MR 0188026
(32 #5471)
 6.
I.
M. Gel’fand and G.
E. Shilov, Generalized functions. Vol. I: Properties and
operations, Translated by Eugene Saletan, Academic Press, New
YorkLondon, 1964. MR 0166596
(29 #3869)
 7.
Mariano
Giaquinta, Introduction to regularity theory for nonlinear elliptic
systems, Lectures in Mathematics ETH Zürich, Birkhäuser
Verlag, Basel, 1993. MR 1239172
(94g:49002)
 8.
Tosio
Kato, Perturbation theory for linear operators, Classics in
Mathematics, SpringerVerlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452
(96a:47025)
 9.
V.
D. Kupradze, T.
G. Gegelia, M.
O. Basheleĭshvili, and T.
V. Burchuladze, Threedimensional problems of the mathematical
theory of elasticity and thermoelasticity, Translated from the second
Russian edition, NorthHolland Series in Applied Mathematics and Mechanics,
vol. 25, NorthHolland Publishing Co., AmsterdamNew York, 1979.
Edited by V. D. Kupradze. MR 530377
(80h:73002)
 10.
Rolf
Leis, Initialboundary value problems in mathematical physics,
B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986. MR 841971
(87h:35003)
 11.
Walter
Littman, Decay at infinity of solutions to
partial differential equations with constant coefficients, Trans. Amer. Math. Soc. 123 (1966), 449–459. MR 0197951
(33 #6110), http://dx.doi.org/10.1090/S00029947196601979517
 12.
Mutsuhide
Matsumura, Uniform estimates of elementary solutions of first order
systems of partial differential equations, Publ. Res. Inst. Math. Sci.
6 (1970), 293–305. MR 0284695
(44 #1919)
 13.
G. Nakamura and J.N. Wang, Unique continuation for the twodimensional anisotropic elasticity system and its applications to inverse problems. Submitted.
 14.
D.
Natroshvili, Twodimensional steadystate oscillation problems of
anisotropic elasticity, Georgian Math. J. 3 (1996),
no. 3, 239–262. MR 1388672
(97c:73017), http://dx.doi.org/10.1007/BF02280007
 15.
John
R. Schulenberger and Calvin
H. Wilcox, A Rellich uniqueness theorem for steadystate wave
propagation in inhomogeneous anisotropic media, Arch. Rational Mech.
Anal. 41 (1971), 18–45. MR 0274954
(43 #712)
 16.
John
R. Schulenberger and Calvin
H. Wilcox, The limiting absorption principle and spectral theory
for steadystate wave propagation in inhomogeneous anisotropic media,
Arch. Rational Mech. Anal. 41 (1971), 46–65. MR 0274955
(43 #713)
 17.
Norbert
Weck, Außenraumaufgaben in der Theorie stationärer
Schwingungen inhomogener elastischer Körper, Math. Z.
111 (1969), 387–398 (German). MR 0263295
(41 #7900)
 18.
Norbert
Weck, Unique continuation for systems with Lamé principal
part, Math. Methods Appl. Sci. 24 (2001), no. 9,
595–605. MR 1834916
(2002f:35048), http://dx.doi.org/10.1002/mma.231
 19.
Calvin
H. Wilcox, Wave operators and asymptotic solutions of wave
propagation problems of classical physics, Arch. Rational Mech. Anal.
22 (1966), 37–78. MR 0199531
(33 #7675)
 20.
Calvin
H. Wilcox, Steadystate wave propagation in homogeneous anisotropic
media, Arch. Rational Mech. Anal. 25 (1967),
201–242. MR 0225528
(37 #1121)
 1.
 D.D. Ang, M. Ikehata, D.D. Trong and M. Yamamoto, Unique continuation for a stationary isotropic Lamé system with varaiable coefficients. Comm. in PDE, 23 (1998), 371385. MR 98j:35049
 2.
 K. Chelminski, The principle of limiting absorption in elasticity. Bull. Polish Acad. Sci. Math., 41 (1993), 1930. MR 97j:35144
 3.
 B. Dehman and L. Rabbiano, La propriété du prolongement unique pour un système elliptique: le système de Lamé. J. Math. Pures Appl., 72 (1993), 475492. MR 94h:35051
 4.
 G.F.D. Duff, The Cauchy problem for elastic waves in an anistropic medium. Philos. Trans. Roy. Soc. London Ser. A, 252 (1960), 249273.MR 22:2157
 5.
 D.M. Eidus, The principle of limiting absorption. AMS Transl., 47 (1965), 157191. MR 0188026 (32:5471)
 6.
 I.M. Gelfand and G.E. Shilov, Generalized Functions. Volume 1. Properties and Operations, Acedemic Press, New York, 1964. MR 29:3869
 7.
 M. Giaquinta, Introduction to Regularity Theory for Nonlinear Elliptic Systems, Birkhäuser, Boston, 1993. MR 94g:49002
 8.
 T. Kato, Perturbation Theory for Linear Operators, SpringerVerlag, New York, 1980. MR 96a:47025
 9.
 V.D. Kupradze, Threedimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, NorthHolland, Amsterdam, 1976.MR 80h:73002
 10.
 R. Leis, Initial Boundary Value Problems in Mathematical Physics, John Wiley & Sons Ltd. and B.G. Teubner, Stuttgart, 1986. MR 87h:35003
 11.
 W. Littman, Decay at infinity of solutions to partial differential equations with constant coefficients. Trans. Amer. Math. Soc., 123 (1966), 449459. MR 33:6110
 12.
 M. Matsumura, Uniform estimates of elementary solutions of first order systems of partial differential equations. Publ. Res. Inst. Math. Sci., 6 (1970), 293305. MR 44:1919
 13.
 G. Nakamura and J.N. Wang, Unique continuation for the twodimensional anisotropic elasticity system and its applications to inverse problems. Submitted.
 14.
 D. Natroshvili, Twodimensional steadystate oscillation problems of anisotropic elasticity. Georgian Math. J., 3 (1996), 239262.MR 97c:73017
 15.
 J.R. Schulenberger and C.H. Wilcox, A Rellich uniqueness theorem for steadystate wave propagation in inhomogeneous anisotropic media. Arch. Rational Mech. Anal., 41 (1971), 1845. MR 43:712
 16.
 J.R. Schulenberger and C.H. Wilcox, The limiting absorption principle and spectral theory for steadystate wave propagation in inhomogeneous anisotropic media. Arch. Rational Mech. Anal., 41 (1971), 4665.MR 43:713
 17.
 N. Weck, Aussenraumaufgaben in der Theorie stationärer Schwingungen inhomogener elastischer Körper. Math. Zeit., 111 (1969), 387398.MR 41:7900
 18.
 N. Weck, Unique continuation for systems with Lamé principal part. Math. Methods Appl. Sci., 24 (2001), 595605. MR 2002f:35048
 19.
 C.H. Wilcox, Wave operators and asymptotic solutions of wave propagation problems of classical physics. Arch. Rational Mech. Anal., 22 (1966), 3778. MR 33:7675
 20.
 C.H. Wilcox, Steadystate wave propagation in homogeneous anisotropic media. Arch. Rational Mech. Anal., 25 (1967), 201242. MR 37:1121
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
35J55,
74G25,
74G30,
74B05,
74E10
Retrieve articles in all journals
with MSC (2000):
35J55,
74G25,
74G30,
74B05,
74E10
Additional Information
Gen Nakamura
Affiliation:
Department of Mathematics, Hokkaido University, Sapporo 0600810, Japan
Email:
gnaka@math.sci.hokudai.ac.jp
JennNan Wang
Affiliation:
Department of Mathematics, National Taiwan University, Taipei 106, Taiwan
Email:
jnwang@math.ntu.edu.tw
DOI:
http://dx.doi.org/10.1090/S0002994704036098
PII:
S 00029947(04)036098
Keywords:
Limiting absorption principle,
anisotropic elasticity system,
radiation conditions
Received by editor(s):
September 15, 2003
Received by editor(s) in revised form:
January 5, 2004
Published electronically:
December 28, 2004
Additional Notes:
The first author was partially supported by GrantinAid for Scientific Research (B)(2) (No.14340038) of the Japan Society for the Promotion of Science
The second author was partially supported by the National Science Council of Taiwan
Article copyright:
© Copyright 2004
American Mathematical Society
