An invariant of tangle cobordisms

Author:
Mikhail Khovanov

Journal:
Trans. Amer. Math. Soc. **358** (2006), 315-327

MSC (2000):
Primary 57Q45

Published electronically:
March 18, 2005

MathSciNet review:
2171235

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a new invariant of tangle cobordisms. The invariant of a tangle is a complex of bimodules over certain rings, well-defined up to chain homotopy equivalence. The invariant of a tangle cobordism is a homomorphism between complexes of bimodules assigned to boundaries of the cobordism.

**1.**John C. Baez and Laurel Langford,*Higher-dimensional algebra. IV. 2-tangles*, Adv. Math.**180**(2003), no. 2, 705–764. MR**2020556**, 10.1016/S0001-8708(03)00018-5**2.**J. Scott Carter, Joachim H. Rieger, and Masahico Saito,*A combinatorial description of knotted surfaces and their isotopies*, Adv. Math.**127**(1997), no. 1, 1–51. MR**1445361**, 10.1006/aima.1997.1618**3.**J. Scott Carter and Masahico Saito,*Reidemeister moves for surface isotopies and their interpretation as moves to movies*, J. Knot Theory Ramifications**2**(1993), no. 3, 251–284. MR**1238875**, 10.1142/S0218216593000167**4.**J. Scott Carter and Masahico Saito,*Knotted surfaces and their diagrams*, Mathematical Surveys and Monographs, vol. 55, American Mathematical Society, Providence, RI, 1998. MR**1487374****5.**John E. Fischer Jr.,*2-categories and 2-knots*, Duke Math. J.**75**(1994), no. 2, 493–526. MR**1290200**, 10.1215/S0012-7094-94-07514-5**6.**M. Jacobsson,

An invariant of link cobordisms from Khovanov's homology theory,

arXiv:math.GT/0206303.**7.**V. M. Kharlamov and V. G. Turaev,*On the definition of the 2-category of 2-knots*, Mathematics in St. Petersburg, Amer. Math. Soc. Transl. Ser. 2, vol. 174, Amer. Math. Soc., Providence, RI, 1996, pp. 205–221. MR**1386661****8.**M. Khovanov,

Crossingless matchings and the cohomology of Springer varieties,

preprint arXiv:math.QA/0202113.**9.**Mikhail Khovanov,*A functor-valued invariant of tangles*, Algebr. Geom. Topol.**2**(2002), 665–741. MR**1928174**, 10.2140/agt.2002.2.665**10.**Mikhail Khovanov,*A categorification of the Jones polynomial*, Duke Math. J.**101**(2000), no. 3, 359–426. MR**1740682**, 10.1215/S0012-7094-00-10131-7**11.**D. Roseman,

Reidemeister-type moves for surfaces in four dimensional space,*Knot theory*(Warsaw, 1995), Banach Center Publ., 42. Polish Acad. Sci., Warsaw, 1998, pp. 347-380.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
57Q45

Retrieve articles in all journals with MSC (2000): 57Q45

Additional Information

**Mikhail Khovanov**

Affiliation:
Department of Mathematics, University of California, One Shields Ave., Davis, California 95616

Email:
mikhail@math.ucdavis.edu

DOI:
https://doi.org/10.1090/S0002-9947-05-03665-2

Received by editor(s):
February 20, 2003

Received by editor(s) in revised form:
March 1, 2004

Published electronically:
March 18, 2005

Article copyright:
© Copyright 2005
American Mathematical Society