Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On meromorphic functions with finite logarithmic order

Author: Peter Tien-Yu Chern
Journal: Trans. Amer. Math. Soc. 358 (2006), 473-489
MSC (2000): Primary 30D30, 30D35
Published electronically: September 26, 2005
MathSciNet review: 2177027
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: By using a slow growth scale, the logarithmic order, with which to measure the growth of functions, we obtain basic results on the value distribution of a class of meromorphic functions of zero order.

References [Enhancements On Off] (What's this?)

  • [Ba] P.D. Barry, The minimum modulus of small integral and subharmonic functions, Proc. London Math. Soc., (3) 12 (1962), 445-495. MR 0139741 (25:3172)
  • [Ca] M.L. Cartwright, Integral Functions, Cambridge University Press, 1952. MR 0077622 (17:1067c)
  • [Ch] C. Chuang, Sur la comparison de la croissance d'une fonction méromorphe et de celle de sa dérivée, Bull. Sci. Math. 75 (1951), 171-190. MR 0045822 (13:640g)
  • [C1] T.Y. Peter Chern, Value distribution of meromorphic function with zero order (preprint, addressed in the Hedberg Conference, June, 1996, Linköping, Sweden.)
  • [C2] T.Y. Peter Chern, On the maximum modulus and the zeros of an transcendental entire function of finite logarithmic order, Bull. Hong Kong Math. Soc. 2 (1999), 271-278. MR 1692738 (2000b:30034)
  • [C3] T.Y. Peter Chern, Common Borel directions of meromorphic function with zero order and its derivative, Proc. Amer. Math. Soc. 132 (2004), no. 4, 1171-1175. MR 2045434 (2004k:30059)
  • [DF] C.C. Davis and P.C. Fenton, The real part of entire functions, Michigan Math. J. 43 (1996), no. 3, 475-494. MR 1420588 (97j:30009)
  • [Fe1] P.C. Fenton, Wiman-Valiron theory for entire functions of finite lower growth, Trans. Amer. Math. Soc. 252 (1979), 221-232. MR 0534119 (80i:30042)
  • [Fe2] P.C. Fenton, The minimum modulus of certain small entire functions, Trans. Amer. Math. Soc. 271 (1982), no. 1, 183-195. MR 0648085 (83h:30022)
  • [Go] A.A. Gol'dberg, The minimum modulus of a meromorphic function of slow growth (Russian) Mat. Zametki 25 (1979), no. 6, 835-844, 956. MR 0540239 (81c:30058)
  • [Ha1] W.K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. 70 (1959), 9-42. MR 0110807 (22:1675)
  • [Ha2] W.K. Hayman, The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math. Bull. 17 (1974), no. 3, 317-358. MR 0385095 (52:5965)
  • [Hi] K. Hiong, Sur les fonctions holomorphes dont les dérivées admettent une valeur exceptionnelle, Ann. École Norm. Sup. 72 (1955), 165-197. MR 0074525 (17:600h)
  • [Ne] R. Nevanlinna, Le Theorems de Picard-Borel et la Theorie des Fonctions Meromorphes, Coll. Borel, 1929.
  • [Os] A. Ostrowski, Über Folgen analytischer Funktionen und einige Verschärfungen des Picardschen Satzes, Math. Zeit. 24 (1926), 215-258.
  • [Ra] Q.I. Rahman, On a class of integral functions of zero order, J. Lond. Math. Soc. 32 (1957), 109-110. MR 0083037 (18:648c)
  • [Ro] J. Rossi, A sharp result concerning cercles de remplissage, Ann. Acad. Sci. Fenn. Ser. A I. Math., vol. 20 (1995), 179-185. MR 1304116 (95k:30062)
  • [Su] J. Sun, On the characteristic of composite entire functions, J. East China Norm. Univ. Natur. Sci. Ed., 1998, no. 4, 29-36. MR 1695896 (2000e:30055)
  • [Ti] E.C. Titchmarsh, Theory of Functions, Oxford University Press, New York, 1939.
  • [VC] G. Valiron and E.F. Collingwood, A theorem concerning integral functions of order less than 1, J. Lond. Math. Soc. 4 (1929), 210-213.
  • [Ya] L. Yang, Value Distribution Theory, Science Press (English Edition), Springer-Verlag, 1993. MR 1301781 (95h:30039)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 30D30, 30D35

Retrieve articles in all journals with MSC (2000): 30D30, 30D35

Additional Information

Peter Tien-Yu Chern
Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
Address at time of publication: Department of Applied Mathematics, I-Shou University, Kaohsiung, Taiwan 840, R.O.C.

Keywords: Logarithmic Borel exceptional value, Borel direction of logarithmic order, finite logarithmic order
Received by editor(s): March 11, 2003
Published electronically: September 26, 2005
Additional Notes: This paper was supported in part by the NSC R.O.C. under the grants NSC 86-2115-M214-001 and NSC 93-2115-M-214-005, a fund from Academia Sinica (Taipei, Taiwan), and funds from Michigan State University and Northern Illinois University.
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society