Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$L^1$-framework for continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations


Authors: Gui-Qiang Chen and Kenneth H. Karlsen
Journal: Trans. Amer. Math. Soc. 358 (2006), 937-963
MSC (2000): Primary 35K65, 35B35, 35G25, 35D99
DOI: https://doi.org/10.1090/S0002-9947-04-03689-X
Published electronically: December 28, 2004
MathSciNet review: 2187640
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We develop a general $L^1$-framework for deriving continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations with the aid of the Chen-Perthame kinetic approach. We apply our $L^1$-framework to establish an explicit estimate for continuous dependence on the nonlinearities and an optimal error estimate for the vanishing anisotropic viscosity method, without imposition of bounded variation of the approximate solutions. Finally, as an example of a direct application of this framework to numerical methods, we focus on a linear convection-diffusion model equation and derive an $L^1$ error estimate for an upwind-central finite difference scheme.


References [Enhancements On Off] (What's this?)

  • 1. D. Aregba-Driollet, R. Natalini, and S. Tang,
    Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems, Math. Comp. 73 (2004), 63-94. MR 2034111
  • 2. P. Bénilan and H. Touré,
    Sur l'équation générale $u\sb t=a(\cdot,u,\phi(\cdot,u)\sb x)\sb x+v$ dans ${L}\sp 1$. II. Le problème d'évolution,
    Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 727-761. MR 1360542 (96m:35135)
  • 3. F. Bouchut and B. Perthame,
    Kruzkov's estimates for scalar conservation laws revisited,
    Trans. Amer. Math. Soc. 350 (1998), 2847-2870. MR 1475677 (98m:65156)
  • 4. F. Bouchut, F. R. Guarguaglini, and R. Natalini,
    Diffusive BGK approximations for nonlinear multidimensional parabolic equations,
    Indiana Univ. Math. J. 49 (2000), 723-749. MR 1793689 (2001k:35162)
  • 5. R. Bürger, S. Evje, and K. H. Karlsen,
    On strongly degenerate convection-diffusion problems modeling sedimentation-consolidation processes,
    J. Math. Anal. Appl. 247 (2000), 517-556. MR 1769093 (2001d:35110)
  • 6. M. C. Bustos, F. Concha, R. Bürger, and E. M. Tory,
    Sedimentation and Thickening: Phenomenological Foundation and Mathematical Theory,
    Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999. MR 1747460 (2002b:76101)
  • 7. J. Carrillo,
    Entropy solutions for nonlinear degenerate problems,
    Arch. Rational Mech. Anal. 147 (1999), 269-361. MR 1709116 (2000m:35132)
  • 8. G.-Q. Chen and E. DiBenedetto,
    Stability of entropy solutions to the Cauchy problem for a class of hyperbolic-parabolic equations,
    SIAM J. Math. Anal. 33 (2001), 751-762. MR 1884720 (2002m:35125)
  • 9. G.-Q. Chen and B. Perthame,
    Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations,
    Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 645-668. MR 1981403 (2004c:35235)
  • 10. B. Cockburn and P.-A. Gremaud,
    A priori estimates for numerical methods for scalar conservation laws, Part I: The general approach,
    Math. Comp. 65 (1996), 533-573. MR 1333308 (96g:65089)
  • 11. B. Cockburn and G. Gripenbergm,
    Continuous dependence on the nonlinearities of solutions of degenerate parabolic equations,
    J. Diff. Eqs. 151 (1999), 231-251. MR 1669570 (2000a:35101)
  • 12. M. S. Espedal and K. H. Karlsen,
    Numerical solution of reservoir flow models based on large time step operator splitting algorithms,
    In: Filtration in Porous Media and Industrial Applications (Cetraro, Italy, 1998), Lecture Notes in Mathematics, 1734 (2000), pp. 9-77, Springer-Verlag: Berlin. MR 1816143 (2002a:76115)
  • 13. S. Evje and K. H. Karlsen,
    Monotone difference approximations of $BV$ solutions to degenerate convection-diffusion equations,
    SIAM J. Numer. Anal. 37 (2000), 1838-1860. MR 1766850 (2001g:65110)
  • 14. S. Evje, K. H. Karlsen, and N. H. Risebro,
    A continuous dependence result for nonlinear degenerate parabolic equations with spatially dependent flux function,
    In: Int. Series of Numerical Mathematics 140 (2001), 337-346, Birkhäuser-Verlag. MR 1882934
  • 15. R. Eymard, T. Gallouët, R. Herbin, and A. Michel,
    Convergence of a finite volume scheme for nonlinear degenerate parabolic equations,
    Numer. Math. 92 (2002), 41-82. MR 1917365 (2003e:65159)
  • 16. K. H. Karlsen and M. Ohlberger,
    A note on the uniqueness of entropy solutions of nonlinear degenerate parabolic equations,
    J. Math. Anal. Appl. 275 (2002), 439-458. MR 1941794 (2004a:35137)
  • 17. K. H. Karlsen and N. H. Risebro,
    Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients,
    M2AN Math. Model. Numer. Anal. 35 (2001), 239-269.MR 1825698 (2002b:35138)
  • 18. K. H. Karlsen and N. H. Risebro,
    On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients,
    Discrete and Continuous Dynamical Systems 9 (2003), 1081-1104.MR 1974417
  • 19. S. N. Kruzkov,
    First order quasi-linear equations in several independent variables,
    Math. USSR Sbornik 10 (1970), 217-243.
  • 20. N. N. Kuznetsov,
    Accuracy of some approximative methods for computing the weak solutions of a first-order quasi-linear equation,
    USSR Comput. Math. and Math. Phys. Dokl. 16 (1976), 105-119.
  • 21. P.-L. Lions, B. Perthame, and E. Tadmor,
    A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc. 7 (1994), 169-191. MR 1201239 (94d:35100)
  • 22. B. J. Lucier,
    A moving mesh numerical method for hyperbolic conservation laws,
    Math. Comp. 46 (1986), 59-69. MR 0815831 (87m:65141)
  • 23. C. Makridakis and B. Perthame,
    Optimal rate of convergence for anisotropic vanishing viscosity limit of a scalar balance law,
    SIAM J. Math. Anal. 34 (2003), 1300-1307. MR 2000971
  • 24. C. Mascia, A. Porretta, and A. Terracina,
    Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations,
    Arch. Rational Mech. Anal. 163 (2002), 87-124. MR 1911095 (2003e:35217)
  • 25. A. Michel and J. Vovelle,
    A finite volume method for parabolic degenerate problems with general Dirichlet boundary conditions,
    Preprint, 2002.
  • 26. M. Ohlberger,
    A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations,
    M2AN Math. Model. Numer. Anal. 35 (2001), 355-387.MR 1825703 (2002a:65142)
  • 27. B. Perthame,
    Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure,
    J. Math. Pures Appl. 77 (1998), 1055-1064. MR 1661021 (2000e:35141)
  • 28. É. Rouvre and G. Gagneux,
    Solution forte entropique de lois scalaires hyperboliques-paraboliques dégénérées,
    C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 599-602. MR 1717116 (2000g:35160)
  • 29. T. Tassa.
    Uniqueness of piecewise smooth weak solutions of multidimensional degenerate parabolic equations,
    J. Math. Anal. Appl. 210 (1987), 598-608. MR 1453194 (98c:35080)
  • 30. A. I. Vol'pert,
    The spaces BV and quasi-linear equations.
    Math. USSR Sbornik 2 (1967), 225-267. MR 0216338 (35:7172)
  • 31. A. I. Vol'pert and S. I. Hudjaev,
    Cauchy's problem for degenerate second order quasilinear parabolic equations,
    Math. USSR Sbornik 7 (1969), 365-387. MR 0264232 (41:8828)
  • 32. Z. Wu and J. Yin,
    Some properties of functions in $BV_x$ and their applications to the uniqueness of solutions for degenerate quasilinear parabolic equations,
    Chinese Northeastern Math. J. 5 (1989), 395-422. MR 1053519 (91j:35153)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35K65, 35B35, 35G25, 35D99

Retrieve articles in all journals with MSC (2000): 35K65, 35B35, 35G25, 35D99


Additional Information

Gui-Qiang Chen
Affiliation: Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, Illinois 60208-2730
Email: gqchen@math.northwestern.edu

Kenneth H. Karlsen
Affiliation: Centre of Mathematics for Applications, Department of Mathematics, University of Oslo, P.O. Box 1053, Blindern, N–0316 Oslo, Norway
Email: kennethk@math.uio.no

DOI: https://doi.org/10.1090/S0002-9947-04-03689-X
Keywords: $L^1$--framework, degenerate parabolic equations, quasilinear, anisotropic, entropy solutions, kinetic formulation, continuous dependence, error estimates, vanishing viscosity, difference schemes
Received by editor(s): January 11, 2004
Published electronically: December 28, 2004
Article copyright: © Copyright 2004 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society