Damped wave equation with a critical nonlinearity
Authors:
Nakao Hayashi, Elena I. Kaikina and Pavel I. Naumkin
Journal:
Trans. Amer. Math. Soc. 358 (2006), 11651185
MSC (2000):
Primary 35Q55; Secondary 35B40
Published electronically:
April 22, 2005
MathSciNet review:
2187649
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We study large time asymptotics of small solutions to the Cauchy problem for nonlinear damped wave equations with a critical nonlinearity
where and space dimensions . Assume that the initial data where weighted Sobolev spaces are Also we suppose that where Then we prove that there exists a positive such that the Cauchy problem above has a unique global solution satisfying the time decay property for all where
 1.
Hiroshi
Fujita, On the blowing up of solutions of the Cauchy problem for
𝑢_{𝑡}=Δ𝑢+𝑢^{1+𝛼}, J.
Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109–124
(1966). MR
0214914 (35 #5761)
 2.
V.A. Galaktionov, S.P. Kurdyumov and A.A. Samarskii, On asymptotic eigenfunctions of the Cauchy problem for a nonlinear parabolic equation, Math. USSR Sbornik, 54 (1986), 421455.
 3.
Kantaro
Hayakawa, On nonexistence of global solutions of some semilinear
parabolic differential equations, Proc. Japan Acad.
49 (1973), 503–505. MR 0338569
(49 #3333)
 4.
N.
Hayashi, E.
I. Kaikina, and P.
I. Naumkin, Largetime behaviour of solutions to the dissipative
nonlinear Schrödinger equation, Proc. Roy. Soc. Edinburgh Sect. A
130 (2000), no. 5, 1029–1043. MR 1800091
(2001j:35253), http://dx.doi.org/10.1017/S0308210500000561
 5.
Nakao
Hayashi, Elena
I. Kaikina, and Pavel
I. Naumkin, Global existence and time decay of small solutions to
the LandauGinzburg type equations, J. Anal. Math. 90
(2003), 141–173. MR 2001068
(2004g:35116), http://dx.doi.org/10.1007/BF02786554
 6.
Ryo
Ikehata and Masahito
Ohta, Critical exponents for semilinear dissipative wave equations
in 𝐑^{𝐍}, J. Math. Anal. Appl. 269
(2002), no. 1, 87–97. MR 1907875
(2003i:35193), http://dx.doi.org/10.1016/S0022247X(02)000215
 7.
Grzegorz
Karch, Selfsimilar profiles in large time asymptotics of solutions
to damped wave equations, Studia Math. 143 (2000),
no. 2, 175–197. MR 1813366
(2001k:35209)
 8.
Shuichi
Kawashima, Mitsuhiro
Nakao, and Kosuke
Ono, On the decay property of solutions to the Cauchy problem of
the semilinear wave equation with a dissipative term, J. Math. Soc.
Japan 47 (1995), no. 4, 617–653. MR 1348752
(96g:35126), http://dx.doi.org/10.2969/jmsj/04740617
 9.
Kusuo
Kobayashi, Tunekiti
Sirao, and Hiroshi
Tanaka, On the growing up problem for semilinear heat
equations, J. Math. Soc. Japan 29 (1977), no. 3,
407–424. MR 0450783
(56 #9076)
 10.
Ta
Tsien Li and Yi
Zhou, Breakdown of solutions to
□𝑢+𝑢_{𝑡}=\vert𝑢\vert^{1+𝛼},
Discrete Contin. Dynam. Systems 1 (1995), no. 4,
503–520. MR 1357291
(96m:35222), http://dx.doi.org/10.3934/dcds.1995.1.503
 11.
Akitaka
Matsumura, On the asymptotic behavior of solutions of semilinear
wave equations, Publ. Res. Inst. Math. Sci. 12
(1976/77), no. 1, 169–189. MR 0420031
(54 #8048)
 12.
Takashi
Narazaki, 𝐿^{𝑝}𝐿^{𝑞} estimates for
damped wave equations and their applications to semilinear problem,
J. Math. Soc. Japan 56 (2004), no. 2, 585–626.
MR
2048476 (2005a:35206), http://dx.doi.org/10.2969/jmsj/1191418647
 13.
Kenji
Nishihara, 𝐿^{𝑝}𝐿^{𝑞} estimates of
solutions to the damped wave equation in 3dimensional space and their
application, Math. Z. 244 (2003), no. 3,
631–649. MR 1992029
(2005b:35168)
 14.
K. Nishihara, estimates for the 3D damped wave equation and their application to the semilinear problem, Seminor Notes of Math. Sci. 6 (2003), 6983, Ibaraki University.
 15.
K. Nishitani and H. Zhao, Decay properties of solutions to the Cauchy problem for the damped wave equation with absorption, preprint (2004).
 16.
Kosuke
Ono, Global existence and asymptotic behavior of small solutions
for semilinear dissipative wave equations, Discrete Contin. Dyn. Syst.
9 (2003), no. 3, 651–662. MR 1974531
(2004b:35237), http://dx.doi.org/10.3934/dcds.2003.9.651
 17.
Grozdena
Todorova and Borislav
Yordanov, Critical exponent for a nonlinear wave equation with
damping, C. R. Acad. Sci. Paris Sér. I Math.
330 (2000), no. 7, 557–562 (English, with
English and French summaries). MR 1760438
(2001a:35025), http://dx.doi.org/10.1016/S07644442(00)002287
 18.
Grozdena
Todorova and Borislav
Yordanov, Critical exponent for a nonlinear wave equation with
damping, J. Differential Equations 174 (2001),
no. 2, 464–489. MR 1846744
(2002k:35218), http://dx.doi.org/10.1006/jdeq.2000.3933
 19.
Qi
S. Zhang, A blowup result for a nonlinear wave equation with
damping: the critical case, C. R. Acad. Sci. Paris Sér. I Math.
333 (2001), no. 2, 109–114 (English, with
English and French summaries). MR 1847355
(2003d:35189), http://dx.doi.org/10.1016/S07644442(01)019991
 1.
 H. Fujita, On the blowingup of solutions of the Cauchy problem for J. Fac. Sci. Univ. of Tokyo, Sect. I, 13 (1966), 109124. MR 0214914 (35:5761)
 2.
 V.A. Galaktionov, S.P. Kurdyumov and A.A. Samarskii, On asymptotic eigenfunctions of the Cauchy problem for a nonlinear parabolic equation, Math. USSR Sbornik, 54 (1986), 421455.
 3.
 K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic equations, Proc. Japan Acad., 49 (1973), 503505. MR 0338569 (49:3333)
 4.
 N. Hayashi, E.I. Kaikina and P.I. Naumkin, Large time behavior of solutions to the dissipative nonlinear Schrödinger equation, Proceedings of the Royal Soc. Edingburgh, 130A (2000), 10291043. MR 1800091 (2001j:35253)
 5.
 N. Hayashi, E.I. Kaikina and P.I. Naumkin, Global existence and time decay of small solutions to the LandauGinzburg type equations, Journal d'Analyse Mathematique 90 (2003), 141173. MR 2001068 (2004g:35116)
 6.
 R. Ikehata and M. Ohta, Critical exponents for semilinear dissipative wave equations in , J. Math. Anal. Appl. 269 (2002), 8797. MR 1907875 (2003i:35193)
 7.
 G. Karch, Selfsimilar profiles in large time asymptotics of solutions to damped wave equations, Studia Math., 143 (2) (2000), 175197. MR 1813366 (2001k:35209)
 8.
 S. Kawashima, M. Nakao, K. Ono, On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term, J. Math. Soc. Japan, 47 (4) (1995), 617653. MR 1348752 (96g:35126)
 9.
 K. Kobayashi, T. Sirao and H. Tanaka, On the growing up problem for semilinear heat equations, J. Math. Soc. Japan, 29 (1977), 407424. MR 0450783 (56:9076)
 10.
 T.T. Li and Y. Zhou, Breakdown of solutions to , Discrete Contin. Dynam. Systems, 1 (4) (1995), 503520. MR 1357291 (96m:35222)
 11.
 A. Matsumura, On the asymptotic behavior of solutions of semilinear wave equations, Publ. Res. Inst. Math. Sci., Kyoto Univ., 12 (1976), 169189. MR 0420031 (54:8048)
 12.
 T. Narazaki, estimates for the damped wave equations and their applications to semilinear problem, J. Math. Soc. Japan, 56 (2004), 585626. MR 2048476
 13.
 K. Nishihara, estimates of solutions to the damped wave equation in 3dimensional space and their application, Math. Z, 244 (2003), 631649. MR 1992029
 14.
 K. Nishihara, estimates for the 3D damped wave equation and their application to the semilinear problem, Seminor Notes of Math. Sci. 6 (2003), 6983, Ibaraki University.
 15.
 K. Nishitani and H. Zhao, Decay properties of solutions to the Cauchy problem for the damped wave equation with absorption, preprint (2004).
 16.
 K. Ono, Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations, Discrete and Continuous Dynamical. Systems, 9 (2003), 651662. MR 1974531 (2004b:35237)
 17.
 G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, C.R. Acad. Sci. Paris, Série I, 330 (2000) 557562. MR 1760438 (2001a:35025)
 18.
 G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Diff. Equations, 174 (2001), 464489. MR 1846744 (2002k:35218)
 19.
 Q.S. Zhang, A blowup result for a nonlinear wave equation with damping: The critical case, C.R. Acad. Sci. Paris, Série I, 333 (2001), 109114. MR 1847355 (2003d:35189)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
35Q55,
35B40
Retrieve articles in all journals
with MSC (2000):
35Q55,
35B40
Additional Information
Nakao Hayashi
Affiliation:
Department of Mathematics, Graduate School of Science, Osaka University, Osaka, Toyonaka, 5600043, Japan
Email:
nhayashi@math.wani.osakau.ac.jp
Elena I. Kaikina
Affiliation:
Departamento de Ciencias Básicas, Instituto Tecnológico de Morelia, Morelia CP 58120, Michoacán, Mexico
Email:
ekaikina@matmor.unam.mx
Pavel I. Naumkin
Affiliation:
Instituto de Matemáticas, UNAM Campus Morelia, AP 613 (Xangari), Morelia CP 58089, Michoacán, Mexico
Email:
pavelni@matmor.unam.mx
DOI:
http://dx.doi.org/10.1090/S0002994705038183
PII:
S 00029947(05)038183
Keywords:
Damped wave equation,
large time asymptotics
Received by editor(s):
April 1, 2003
Received by editor(s) in revised form:
April 22, 2004
Published electronically:
April 22, 2005
Additional Notes:
The second and the third authors were supported in part by CONACYT
Article copyright:
© Copyright 2005 American Mathematical Society
