Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Damped wave equation with a critical nonlinearity


Authors: Nakao Hayashi, Elena I. Kaikina and Pavel I. Naumkin
Journal: Trans. Amer. Math. Soc. 358 (2006), 1165-1185
MSC (2000): Primary 35Q55; Secondary 35B40
DOI: https://doi.org/10.1090/S0002-9947-05-03818-3
Published electronically: April 22, 2005
MathSciNet review: 2187649
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study large time asymptotics of small solutions to the Cauchy problem for nonlinear damped wave equations with a critical nonlinearity

\begin{displaymath}\left\{ \begin{array}{c} \partial _{t}^{2}u+\partial _{t}u-\... ...u_{1}\left( x\right) ,x\in \mathbf{R}^{n}, \end{array}\right. \end{displaymath}

where $\varepsilon >0,$ and space dimensions $n=1,2,3$. Assume that the initial data

\begin{displaymath}u_{0}\in \mathbf{H}^{\delta ,0}\cap \mathbf{H}^{0,\delta },\t... ..._{1}\in \mathbf{H}^{\delta -1,0}\cap \mathbf{H}^{-1,\delta }, \end{displaymath}

where $\delta >\frac{n}{2},$ weighted Sobolev spaces are

\begin{displaymath}\mathbf{H}^{l,m}=\left\{ \phi \in \mathbf{L}^{2};\left\Vert \... ...left( x\right) \right\Vert _{\mathbf{L}^{2}}<\infty \right\} , \end{displaymath}

$\left\langle x\right\rangle =\sqrt{1+x^{2}}.$ Also we suppose that

\begin{displaymath}\lambda \theta ^{\frac{2}{n}}>0,\int u_{0}\left( x\right) dx>0, \end{displaymath}

where

\begin{displaymath}\text{ }\theta =\int \left( u_{0}\left( x\right) +u_{1}\left( x\right) \right) dx\text{.} \end{displaymath}

Then we prove that there exists a positive $\varepsilon _{0}$ such that the Cauchy problem above has a unique global solution $u\in \mathbf{C}\left( \left[ 0,\infty \right) ;\mathbf{H}^{\delta ,0}\right) $ satisfying the time decay property

\begin{displaymath}\left\Vert u\left( t\right) -\varepsilon \theta G\left( t,x\r... ...gle t\right\rangle ^{-\frac{n}{2}\left( 1-\frac{1}{p}\right) } \end{displaymath}

for all $t>0,$ $1\leq p\leq \infty ,$ where $\varepsilon \in \left( 0,\varepsilon _{0}\right] .$


References [Enhancements On Off] (What's this?)

  • 1. H. Fujita, On the blowing-up of solutions of the Cauchy problem for $u_{t}=\Delta u+u^{1+\alpha },$ J. Fac. Sci. Univ. of Tokyo, Sect. I, 13 (1966), 109-124. MR 0214914 (35:5761)
  • 2. V.A. Galaktionov, S.P. Kurdyumov and A.A. Samarskii, On asymptotic eigenfunctions of the Cauchy problem for a nonlinear parabolic equation, Math. USSR Sbornik, 54 (1986), 421-455.
  • 3. K. Hayakawa, On nonexistence of global solutions of some semi-linear parabolic equations, Proc. Japan Acad., 49 (1973), 503-505. MR 0338569 (49:3333)
  • 4. N. Hayashi, E.I. Kaikina and P.I. Naumkin, Large time behavior of solutions to the dissipative nonlinear Schrödinger equation, Proceedings of the Royal Soc. Edingburgh, 130-A (2000), 1029-1043. MR 1800091 (2001j:35253)
  • 5. N. Hayashi, E.I. Kaikina and P.I. Naumkin, Global existence and time decay of small solutions to the Landau-Ginzburg type equations, Journal d'Analyse Mathematique 90 (2003), 141-173. MR 2001068 (2004g:35116)
  • 6. R. Ikehata and M. Ohta, Critical exponents for semilinear dissipative wave equations in $\mathbf{R}^{N}$, J. Math. Anal. Appl. 269 (2002), 87-97. MR 1907875 (2003i:35193)
  • 7. G. Karch, Selfsimilar profiles in large time asymptotics of solutions to damped wave equations, Studia Math., 143 (2) (2000), 175-197. MR 1813366 (2001k:35209)
  • 8. S. Kawashima, M. Nakao, K. Ono, On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term, J. Math. Soc. Japan, 47 (4) (1995), 617-653. MR 1348752 (96g:35126)
  • 9. K. Kobayashi, T. Sirao and H. Tanaka, On the growing up problem for semilinear heat equations, J. Math. Soc. Japan, 29 (1977), 407-424. MR 0450783 (56:9076)
  • 10. T.T. Li and Y. Zhou, Breakdown of solutions to $ \Box u+u_{t}=\left\vert u\right\vert ^{1+\alpha }$, Discrete Contin. Dynam. Systems, 1 (4) (1995), 503-520. MR 1357291 (96m:35222)
  • 11. A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations, Publ. Res. Inst. Math. Sci., Kyoto Univ., 12 (1976), 169-189. MR 0420031 (54:8048)
  • 12. T. Narazaki, $\mathbf{L}^{p}-\mathbf{L}^{q}$ estimates for the damped wave equations and their applications to semi-linear problem, J. Math. Soc. Japan, 56 (2004), 585-626. MR 2048476
  • 13. K. Nishihara, $\mathbf{L}^{p}-\mathbf{L}^{q}$ estimates of solutions to the damped wave equation in 3-dimensional space and their application, Math. Z, 244 (2003), 631-649. MR 1992029
  • 14. K. Nishihara, $\mathbf{L}^{p}-\mathbf{L}^{q}$ estimates for the 3-D damped wave equation and their application to the semilinear problem, Seminor Notes of Math. Sci. 6 (2003), 69-83, Ibaraki University.
  • 15. K. Nishitani and H. Zhao, Decay properties of solutions to the Cauchy problem for the damped wave equation with absorption, preprint (2004).
  • 16. K. Ono, Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations, Discrete and Continuous Dynamical. Systems, 9 (2003), 651-662. MR 1974531 (2004b:35237)
  • 17. G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, C.R. Acad. Sci. Paris, Série I, 330 (2000) 557-562. MR 1760438 (2001a:35025)
  • 18. G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Diff. Equations, 174 (2001), 464-489. MR 1846744 (2002k:35218)
  • 19. Q.S. Zhang, A blow-up result for a nonlinear wave equation with damping: The critical case, C.R. Acad. Sci. Paris, Série I, 333 (2001), 109-114. MR 1847355 (2003d:35189)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35Q55, 35B40

Retrieve articles in all journals with MSC (2000): 35Q55, 35B40


Additional Information

Nakao Hayashi
Affiliation: Department of Mathematics, Graduate School of Science, Osaka University, Osaka, Toyonaka, 560-0043, Japan
Email: nhayashi@math.wani.osaka-u.ac.jp

Elena I. Kaikina
Affiliation: Departamento de Ciencias Básicas, Instituto Tecnológico de Morelia, Morelia CP 58120, Michoacán, Mexico
Email: ekaikina@matmor.unam.mx

Pavel I. Naumkin
Affiliation: Instituto de Matemáticas, UNAM Campus Morelia, AP 61-3 (Xangari), Morelia CP 58089, Michoacán, Mexico
Email: pavelni@matmor.unam.mx

DOI: https://doi.org/10.1090/S0002-9947-05-03818-3
Keywords: Damped wave equation, large time asymptotics
Received by editor(s): April 1, 2003
Received by editor(s) in revised form: April 22, 2004
Published electronically: April 22, 2005
Additional Notes: The second and the third authors were supported in part by CONACYT
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society