Algebra of dimension theory

Author:
Jerzy Dydak

Journal:
Trans. Amer. Math. Soc. **358** (2006), 1537-1561

MSC (2000):
Primary 54F45, 55M10, 55N99, 55Q40, 55P20

DOI:
https://doi.org/10.1090/S0002-9947-05-03690-1

Published electronically:
April 22, 2005

MathSciNet review:
2186985

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The dimension algebra of graded groups is introduced. With the help of known geometric results of extension theory, this algebra induces all known results of the cohomological dimension theory. Elements of the algebra are equivalence classes of graded groups . There are two geometric interpretations of these equivalence classes: 1) For pointed CW complexes and , if and only if the infinite symmetric products and are of the same extension type (i.e., iff for all compact ). 2) For pointed compact spaces and , if and only if and are of the same dimension type (i.e., for all Abelian groups ).

Dranishnikov's version of the Hurewicz Theorem in extension theory becomes for all simply connected .

The concept of cohomological dimension of a pointed compact space with respect to a graded group is introduced. It turns out iff for all . If and are two positive graded groups, then if and only if for all compact .

**[Git]**M. Aguilar, S. Gitler, and C. Prieto,*Algebraic Topology from a Homotopical Viewpoint*, Springer-Verlag (2002). MR**1908260 (2003c:55001)****[BK]**A. K. Bousfield and D. M. Kan,*Homotopy limits, Completions, and Localizations*, Lecture Notes In Math., Springer-Verlag (1972). MR**0365573 (51:1825)****[CD]**M. Cencelj and A. N. Dranishnikov,*Extension of maps to nilpotent spaces II*, Topology Appl. 124 (2002), no. 1, 77-83. MR**1926136 (2003f:55002)****[D]**A. N. Dranishnikov,*On intersection of compacta in euclidean space II*, Proceedings of AMS 113 (1991), 1149-1154. MR**1060721 (92c:54015)****[D]**A. N. Dranishnikov,*On the mapping intersection problem*, Pacific Journal of Mathematics 173 No.2 (1996), 403-412. MR**1394397 (97e:54030)****[D]**A. N. Dranishnikov,*Extension of maps into CW complexes*, Math. USSR Sbornik 74 (1993), 47-56. MR**1133570 (93a:55002)****[D]**A. N. Dranishnikov,*On dimension of the product of two compacta and the dimension of their intersection in general position in Euclidean space*, Transactions of the American Math.Soc. 352 (2000), 5599-5618.MR**1781276 (2001j:55002)****[D]**A. N. Dranishnikov,*Basic elements of the cohomological dimension theory of compact metric spaces*(1999).**[D-D]**A. Dranishnikov and J. Dydak,*Extension dimension and extension types*, Proceedings of the Steklov Institute of Mathematics 212 (1996), 55-88. MR**1635023 (99h:54049)****[D-D]**A. Dranishnikov and J. Dydak,*Extension theory of separable metrizable spaces with applications to dimension theory*, Transactions of the American Math. Soc. 353 (2000), 133-156. MR**1694287 (2001f:55002)****[Dy]**J. Dydak,*Cohomological dimension and metrizable spaces II*, Trans. Amer. Math. Soc. 348 (1996), 1647-1661. MR**1333390 (96h:55001)****[Dy]**J. Dydak,*Realizing dimension functions via homology*, Topology and its Appl. 64 (1995), 1-7. MR**1354376 (96k:54058)****[Dy]**J. Dydak,*Extension theory of infinite symmetric products*, Fundamenta Mathematicae, to appear.**[HMR]**P. Hilton, G. Mislin, and J. Roitberg,*Localizations of Nilpotent Groups and Spaces*, North-Holland (1975).MR**0478146 (57:17635)****[Krull1931]**W. Krull,*Allgemeine Bewertungstheorie*, J.Reine Angew. Math 167 (1931), 160-196.**[K]**V. I. Kuzminov,*Homological dimension theory*, Russian Math. Surveys 23 (1968), 1-45. MR**0240813 (39:2158)****[N]**J. A. Neisendorfer,*Primary homotopy theory*, Memoirs of AMS 232 (1980), 1-67. MR**0567801 (81b:55035)****[O]**W. Olszewski,*Completion theorem for cohomological dimensions*, Proceedings of AMS 123 (1995), 2261-2264. MR**1307554 (95k:54064)****[S]**E. V. Shchepin,*Arithmetic of dimension theory*, Russian Math. Surveys 53 (1998), 975-1069. MR**1691185 (2002a:55002)****[Sp]**E. Spanier,*Algebraic Topology*, McGraw-Hill (1966), New York, NY. MR**0210112 (35:1007)****[Su]**D. Sullivan,*Geometric Topology, Part I: Localization, Periodicity, and Galois Symmetry*, M.I.T. Press (1970). MR**0494074 (58:13006a)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
54F45,
55M10,
55N99,
55Q40,
55P20

Retrieve articles in all journals with MSC (2000): 54F45, 55M10, 55N99, 55Q40, 55P20

Additional Information

**Jerzy Dydak**

Affiliation:
Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1300

Email:
dydak@math.utk.edu

DOI:
https://doi.org/10.1090/S0002-9947-05-03690-1

Keywords:
Cohomological dimension,
dimension,
Eilenberg-Mac\,
Lane complexes,
graded groups,
infinite symmetric products,
Moore spaces

Received by editor(s):
August 14, 2001

Received by editor(s) in revised form:
April 12, 2004

Published electronically:
April 22, 2005

Additional Notes:
This research was supported in part by grant DMS-0072356 from the National Science Foundation

Article copyright:
© Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.