Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Automorphisms of Coxeter groups


Author: Patrick Bahls
Journal: Trans. Amer. Math. Soc. 358 (2006), 1781-1796
MSC (2000): Primary 20F28, 20F55
DOI: https://doi.org/10.1090/S0002-9947-05-03779-7
Published electronically: October 21, 2005
MathSciNet review: 2186996
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We compute ${\rm Aut}(W)$ for any even Coxeter group whose Coxeter diagram is connected, contains no edges labeled 2, and cannot be separated into more than 2 connected components by removing a single vertex. The description is given explicitly in terms of the given presentation for the Coxeter group and admits an easy characterization of those groups $W$ for which ${\rm Out}(W)$ is finite.


References [Enhancements On Off] (What's this?)

  • 1. Bahls, P., ``Even rigidity in Coxeter groups'', Ph.D. Thesis, Vanderbilt University, 2002.
  • 2. Bahls, P., ``Strongly rigid even Coxeter groups'', Topology Proceedings 28 (2004) no. 1, 19-54. MR 2105446 (2005i:20063)
  • 3. Bahls, P., and Mihalik, M., ``Reflection independence in even Coxeter groups'', Geom. Ded. 110 (2005) no. 1, 63-80. MR 2136020
  • 4. Bahls, P., and Mihalik, M., ``Centralizers of parabolic subgroups of Coxeter groups'', preprint, 2003.
  • 5. Bourbaki, N., Groupes et Algebres de Lie, Chap. IV-VI, Hermann, Paris, 1981.MR 0647314 (83g:17001)
  • 6. Charney, R., and Davis, M., ``When is a Coxeter group determined by its system?'', J. London Math. Soc. (2) 61 (2000) no. 2, 441-461.MR 1760693 (2001i:20078)
  • 7. Franzsen, W., and Howlett, R., ``Automorphisms of Coxeter groups of rank 3'', Proc. Am. Math. Soc. 129 (2001) no. 9, 2607-2616.MR 1838783 (2002c:20060)
  • 8. Franzsen, W., ``Automorphisms of Coxeter groups of rank 3 with infinite bonds,'' J. Algebra 248 (2002) no. 1, 381-396. MR 1879023 (2003f:20060)
  • 9. Gilbert, N., ``Presentations of the automorphism group of a free product,'' Proc. London Math. Soc. (3) 54 (1987), 115-140.MR 0872253 (87m:20076)
  • 10. Howlett, R., Rowley, P., and Taylor, D., ``On outer automorphism groups of Coxeter groups'', Manuscripta Math. 93 (1997) no. 4, 499-513.MR 1465894 (98j:20056)
  • 11. James, L., ``Complexes and Coxeter groups - operations and outer automorphisms'', J. Algebra 113 (1988) no. 2, 339-345. MR 0929764 (89c:20055)
  • 12. Levitt, G., ``Automorphisms of hyperbolic groups and graphs of groups'', preprint, 2003.
  • 13. Lyndon, R., and Schupp, P., Combinatorial Group Theory, Ergebnisse series, vol. 89, Springer, New York, 1977 (reprinted in the Springer Classics in Mathematics Series, 2000). MR 1812024 (2001i:20064)
  • 14. Mihalik, M., and Tschantz, S., ``Visual decompositions of Coxeter groups'', preprint, 2001.
  • 15. Mühlherr, B., ``Automorphisms of graph-universal Coxeter groups'', J. Algebra 200 (1998) no. 2, 629-649. MR 1610676 (98m:20048)
  • 16. Mühlherr, B., and Weidmann, R., ``Rigidity of skew-angled Coxeter groups'', Adv. Geom. 2 (2002) no. 4, 391-415.MR 1941338 (2003h:20073)
  • 17. Rips, E., and Sela, Z., ``Structure and rigidity in hyperbolic groups I'', Geom. Func. Anal. 4 no. 3 (1994), 337-371.MR 1274119 (96c:20067)
  • 18. Tits, J., ``Sur le groupe des automorphismes des certains groupes de Coxeter'', J. Algebra 113 (1988) no. 2, 346-357. MR 0929765 (89b:20077)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 20F28, 20F55

Retrieve articles in all journals with MSC (2000): 20F28, 20F55


Additional Information

Patrick Bahls
Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Email: pbahls@math.uiuc.edu

DOI: https://doi.org/10.1090/S0002-9947-05-03779-7
Keywords: Coxeter group, group automorphism
Received by editor(s): May 20, 2003
Received by editor(s) in revised form: July 9, 2004
Published electronically: October 21, 2005
Additional Notes: The author was supported by an NSF VIGRE postdoctoral grant.
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society