Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Multiple homoclinic orbits in conservative and reversible systems


Authors: Ale Jan Homburg and Jürgen Knobloch
Journal: Trans. Amer. Math. Soc. 358 (2006), 1715-1740
MSC (2000): Primary 34Cxx, 37Cxx, 37Gxx
DOI: https://doi.org/10.1090/S0002-9947-05-03793-1
Published electronically: November 1, 2005
MathSciNet review: 2186994
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study dynamics near multiple homoclinic orbits to saddles in conservative and reversible flows. We consider the existence of two homoclinic orbits in the bellows configuration, where the homoclinic orbits approach the equilibrium along the same direction for positive and negative times.

In conservative systems one finds one parameter families of suspended horseshoes, parameterized by the level of the first integral. A somewhat similar picture occurs in reversible systems, with two homoclinic orbits that are both symmetric. The lack of a first integral implies that complete horseshoes do not exist. We provide a description of orbits that necessarily do exist.

A second possible configuration in reversible systems occurs if a non-symmetric homoclinic orbit exists and forms a bellows together with its symmetric image. We describe the nonwandering set in an unfolding. The nonwandering set is shown to simultaneously contain one-parameter families of periodic orbits, hyperbolic periodic orbits of different index, and heteroclinic cycles between these periodic orbits.


References [Enhancements On Off] (What's this?)

  • [AroGolKru91] D.G. Aronson, M. Golubitsky, M. Krupa, Coupled arrays of Josephson junctions and bifurcation of maps with $ S\sb N$ symmetry, Nonlinearity 4, 861-902 (1991). MR 1124338 (93d:58107a)
  • [ChaGro97] A. R. Champneys, M.D. Groves, A global investigation of solitairy wave solutions to a two-parameter model for water waves, J. Fluid Mech. 342, 199-229 (1997). MR 1460660 (98f:76015)
  • [ChoLiuYi00] S.-N. Chow, W. Liu, Y. Yi, Center manifolds for invariant sets, J. Differential Equations 168 (2000), 355-385. MR 1808454 (2002a:37028)
  • [Den89] B. Deng, The Shil'nikov problem, exponential expansion, strong $ \lambda$-lemma, $ C^1$-linearization, and homoclinic bifurcation, Journ. Diff. Eq. 79, 189-231 (1989). MR 1000687 (90k:58161)
  • [Den89b] B. Deng, Exponential expansion with Šil'nikov's saddle-focus, Journ. Diff. Eq. 82, 156-173 (1989). MR 1023305 (91b:58183)
  • [Den93] B. Deng, Homoclinic twisting bifurcations and cusp horseshoe maps, J. Dynam. Differential Equations 5 (1993), 417-467. MR 1235038 (94i:58134)
  • [Den96] B. Deng, Exponential expansion with principal eigenvalues. Nonlinear dynamics, bifurcations and chaotic behavior, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 6, 1161-1167 (1996). MR 1409417 (97g:58123)
  • [Dev76] R.L. Devaney, Reversible diffeomorphisms and flows, Trans. Amer. Math. Soc. 218, 89-113 (1976). MR 0402815 (53:6629)
  • [Dev77] R.L. Devaney, Blue sky catastrophes in reversible and Hamiltonian systems, Indiana Univ. Math. Journal 26, 247-263 (1977). MR 0431274 (55:4275)
  • [Dev58] R. DeVogelaere, On the structure of symmetric periodic solutions of conservative systems, with applications, in: Contributions to the theory of nonlinear oscillations, vol. IV, Annals of Mathematics Studies no. 41, Princeton Univ. Press. 1958. MR 0101362 (21:174)
  • [FieTur96] B. Fiedler, D. Turaev, Coalescence of reversible homoclinic orbits causes elliptic resonance, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 6, 1007-1027 (1996). MR 1409408 (97i:58121)
  • [GilVan87] S.A. van Gils, A. Vanderbauwhede, Center manifolds and contractions on a scale of Banach spaces, J. of Functional Analysis 72, 209-224 (1987). MR 0886811 (88d:58085)
  • [Hom93] A.J. Homburg, Some global aspects of homoclinic bifurcations of vector fields, PhD-thesis, University of Groningen, 1993.
  • [Hom96] A.J. Homburg, Global aspects of homoclinic bifurcations of vector fields, Memoirs of the A.M.S. 578, (1996). MR 1327210 (96i:58125)
  • [Hom00] A.J. Homburg, Singular heteroclinic cycles, Journ. Diff. Eq. 161, 358-402 (2000). MR 1744144 (2001a:37030)
  • [HomKokKru94] A.J. Homburg, H. Kokubu, M. Krupa, The cusp horseshoe and its bifurcations in the unfolding of an inclination flip homoclinic orbit, Ergod. Th. & Dynam. Sys. 14, 667-693 (1994). MR 1304138 (96a:58134)
  • [Irw80] M.C. Irwin, A new proof of the pseudostable manifold theorem, J. London Math. Soc. 21, 557-566 (1980). MR 0577730 (81h:34051)
  • [KisKokOka93] M. Kisaka, H. Kokubu, H. Oka, Bifurcations to $ N$-homoclinic orbits and $ N$-periodic orbits in vector fields, J. Dyn. Diff. Eq. 5, 305-357 (1993). MR 1223451 (94m:58158)
  • [KisKokOka93b] M. Kisaka, H. Kokubu, H. Oka, Supplement to homoclinic doubling bifurcation in vector fields. In: Dynamical Systems, Longman, 1993. MR 1213943 (94c:58136)
  • [Kno97] J. Knobloch, Bifurcation of degenerate homoclinics in reversible and conservative systems, J. Dyn. Diff. Eq. 9, 427-444 (1997). MR 1464081 (99f:58147)
  • [Kno00] J. Knobloch, Lin's method for discrete dynamical systems, J. of Difference Eqn. and Appl. 6, 577-623 (2000). MR 1802448 (2001k:37018)
  • [KolLer96] O.Yu. Koltsova, L.M. Lerman, Families of transverse Poincaré homoclinic orbits in $ 2N$-dimensional Hamiltonian systems close the system with a loop to a saddle -center, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 6, 991-1006 (1996). MR 1409407 (97g:58060)
  • [Lin90] X.-B. Lin, Using Melnikovs method to solve Shilnikovs problems, Proc. Roy. Soc. Edinburgh 116A, 295-325 (1990). MR 1084736 (92b:58195)
  • [MorHed38] M. Morse, G.A. Hedlund, Symbolic dynamics, Amer. J. Math. 60, 815-866 (1938).
  • [OvsShi87] I.M. Ovsyannikov, L.P. Shil'nikov, On systems with saddle-focus homoclinic curve, Math. USSR Sbornik, 58, 557-574 (1987).
  • [RouRou96] R. Roussarie, C. Rousseau, Almost planar homoclinic loops in $ {\mathbb{R}}^3$, J. Differential Equations 126 (1996), 1-47. MR 1382055 (97e:58170)
  • [San93] B. Sandstede, Verzweigungstheorie homokliner Verdopplungen, PhD-thesis, Free University of Berlin, 1993.
  • [San00] B. Sandstede, Center manifolds for homoclinic solutions, J. Dyn. Diff. Eq. 12, 449-510 (2000). MR 1800130 (2001m:37167)
  • [SanJonAle97] B. Sandstede, C.K.R.T. Jones, J.C. Alexander, Existence and stability of $ N$-pulses on optical fibres with phase-sensitive amplifiers, Physica D 106, 167-206 (1997). MR 1460453 (98h:35227)
  • [ShaTur99] M.V. Shashkov, D.V. Turaev, An existence theorem of smooth nonlocal center manifolds for systems close to a system with a homoclinic loop, J. Nonlinear Sci. 9, 525-573 (1999). MR 1707981 (2000f:37026)
  • [Shi65] L.P. Shil'nikov, A case of the existence of a countable number of periodic motions, Soviet Math. Dokl. 6, 163-166 (1965).
  • [Shi67] L.P. Shil'nikov, On the Poincaré-Birkhoff problem, Math. USSR Sbornik 3, 353-371 (1967).
  • [Tur88] D.V. Turaev, Bifurcations of a homoclinic ``figure eight" of a multidimensional saddle, Russian Math. Surveys 43, 264-265 (1988). MR 0971495 (90m:58156)
  • [Tur01] D.V. Turaev, Multi-pulse homoclinic loops in systems with a smooth first integral, in: Ergodic theory, analysis, and efficient simulation of dynamical systems, Springer Verlag, 2001. MR 1850326 (2002f:37094)
  • [TurShi87] D.V. Turaev, L.P. Shil'nikov, On bifurcations of a homoclinic ``figure eight" for a saddle with negative saddle value, Soviet. Math. Dokl. 34, 397-401 (1987).
  • [Van92] A. Vanderbauwhede, Bifurcation of degenerate homoclinics, Results in Mathematics 21, 211-223 (1992). MR 1146644 (93a:58131)
  • [VanFie92] A. Vanderbauwhede, B. Fiedler, Homoclinic period blow-up in reversible and conservative systems, Z. Angew. Math. Phys. 43, 292-318 (1992). MR 1162729 (93f:58209)
  • [WagCha02] T. Wagenknecht, A.R. Champneys, When gap solitons become embedded solitons: a generic unfolding, Phys. D 177 (2003), 50-70. MR 1965327 (2004a:37103)
  • [Yan87] E. Yanagida, Branching from double pulse solutions from single pulse solutions in nerve axon equations, J. Differential Equations 66 (1987), 243-262. MR 0871997 (88c:35078)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 34Cxx, 37Cxx, 37Gxx

Retrieve articles in all journals with MSC (2000): 34Cxx, 37Cxx, 37Gxx


Additional Information

Ale Jan Homburg
Affiliation: KdV Institute for Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands
Email: alejan@science.uva.nl

Jürgen Knobloch
Affiliation: Institute for Mathematics, Technical University Ilmenau, Postbox 10 05 65, D-98684 Ilmenau, Germany
Email: knobi@mathematik.tu-ilmenau.de

DOI: https://doi.org/10.1090/S0002-9947-05-03793-1
Received by editor(s): September 19, 2002
Received by editor(s) in revised form: July 1, 2004
Published electronically: November 1, 2005
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society