Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Second-order hyperbolic s.p.d.e.'s driven by homogeneous Gaussian noise on a hyperplane

Authors: Robert C. Dalang and Olivier Lévêque
Journal: Trans. Amer. Math. Soc. 358 (2006), 2123-2159
MSC (2000): Primary 60H15; Secondary 60G15, 35R60
Published electronically: May 9, 2005
MathSciNet review: 2197451
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study a class of hyperbolic stochastic partial differential equations in Euclidean space, that includes the wave equation and the telegraph equation, driven by Gaussian noise concentrated on a hyperplane. The noise is assumed to be white in time but spatially homogeneous within the hyperplane. Two natural notions of solutions are function-valued solutions and random field solutions. For the linear form of the equations, we identify the necessary and sufficient condition on the spectral measure of the spatial covariance for existence of each type of solution, and it turns out that the conditions differ. In spatial dimensions 2 and 3, under the condition for existence of a random field solution to the linear form of the equation, we prove existence and uniqueness of a random field solution to non-linear forms of the equation.

References [Enhancements On Off] (What's this?)

  • 1. Abramowitz M., Stegun I.A., ``Handbook of mathematical functions'', 1964, National Bureau of Standards. MR 0167642 (29:4914)
  • 2. Alòs E., Bonnacorsi S., ``Stochastic partial differential equations with Dirichlet white-noise boundary conditions'', Ann. Inst. H. Poincaré Probab. Statist. 38(2), 2002, pp. 125-154. MR 1899108 (2003a:60093)
  • 3. Badii L., Oberhettinger F., ``Tables of Laplace transforms'', 1973, Springer Verlag. MR 0352889 (50:5375)
  • 4. Berg C., Christensen J.P.R., Ressel P., ``Harmonic analysis on semigroups'', 1984, Springer Verlag. MR 0747302 (86b:43001)
  • 5. Dalang R.C., ``Extending the martingale measure stochastic integral with applications to spatially homogeneous SPDE's'', Electronic Journal of Probability, Vol. 4, 1999, Article No. 6. MR 1684157 (2000b:60132)
  • 6. Dalang R.C., ``Corrections to Extending the martingale measure stochastic integral with applications to spatially homogeneous SPDE's'', Electronic Journal of Probability, Vol. 6, 2001. MR 1825714 (2002b:60111)
  • 7. Dalang R.C., Frangos N.E., ``The stochastic wave equation in two spatial dimensions'', Ann. Prob., Vol. 26 (1), 1998, pp. 187-212.MR 1617046 (99c:60127)
  • 8. Dawson D.A., Salehi H., ``Spatially homogeneous random evolutions'', J. Mult. Anal., Vol. 10, 1980, pp. 141-180. MR 0575923 (82c:60102)
  • 9. Da Prato G., Zabczyck J., ``Stochastic equations in infinite dimensions'', Encyclopedia of Mathematics and its Applications 44, 1992, Cambridge University Press. MR 1207136 (95g:60073)
  • 10. Da Prato G., Zabczyck J., ``Evolution equations with white-noise boundary conditions'', Stoch. and Stoch. Reports, Vol. 42, 1993, pp. 167-182.MR 1291187 (95m:60088)
  • 11. De Brucq D., Olivier, C., ``Approximations des processus gaussiens stationaires, solutions d'équations aux dérivées partielles linéaires'', Rev. Roum. Math. Pures et Appl., Tome XXVIII, 1983, pp. 205-228. MR 0705453 (84m:60050)
  • 12. Donoghue W.F., ``Distributions and Fourier Transforms'', 1969, Academic Press.
  • 13. Durrett R., ``Probability: theory and examples'', 1996, Duxbury Press.MR 1609153 (98m:60001)
  • 14. Feshbach H., Morse P.M., ``Methods in theoretical physics'', Vol. I and II, 1953, McGraw Hill. MR 0059774 (15:583h)
  • 15. Folland G. B., ``Introduction to partial differential equations'', 1995, Princeton University Press. MR 1357411 (96h:35001)
  • 16. Hörmander L., ``The analysis of linear partial differential operators'', Vol. 2, 1984, Springer Verlag. MR 0705278 (85g:35002b)
  • 17. Karczewska A., Zabczyck J., ``Stochastic PDE's with function-valued solutions'', in Clément Ph., den Hollander F., van Neerven J. and de Pagter B. (Eds), ``Infinite-dimensional stochastic analysis'', Proceedings of the Colloquium of the Royal Netherlands Academy of Arts and Sciences, 1999, Amsterdam. MR 1832378 (2002h:60132)
  • 18. Mao X., Markus L., ``Wave equation with stochastic boundary values'', J. Math. Anal. and Appl., Vol. 177, 1993, pp. 315-341. MR 1231485 (94g:60115)
  • 19. Maslowski B., ``Stability of semilinear equations with boundary and pointwise noise'', Annali della Scuola Normale Superiore di Pisa, Serie IV, Vol. XXII, 1995, Fasc. 1. MR 1315350 (95m:35214)
  • 20. Millet A., Sanz-Solé M., ``A stochastic wave equation in two space dimension: smoothness of the law'' Ann. Prob., Vol. 27 (2), 1999, pp. 803-844.MR 1698971 (2001e:60130)
  • 21. Millet A., Sanz-Solé M., ``Approximation and support theorem for a wave equation in two space dimensions'', Bernoulli, Vol. 6 (5), 2000, pp. 887-915.MR 1791907 (2001m:60147)
  • 22. Mueller C., ``Long time existence for the wave equation with a noise term'', Ann. Prob., Vol. 25(1), 1997, pp.133-151. MR 1428503 (98b:60113)
  • 23. Neveu J., ``Processus aléatoires gaussiens'', 1968, Presses de l'Université de Montréal. MR 0272042 (42:6923)
  • 24. Oberhettinger F., ``Tables of Fourier transforms and Fourier transforms of distributions'', 1990, Springer Verlag. MR 1055360 (91g:00010)
  • 25. Peszat S., ``The Cauchy problem for a nonlinear stochastic wave equation in any dimension'', J. Evol. Eq., Vol. 2, 2002, pp. 383-394. MR 1930613 (2003k:60157)
  • 26. Peszat S., Zabczyck J., ``Nonlinear stochastic wave and heat equations'', Prob. Th. and Rel. Fields, Vol. 116, 2000, pp. 421-443.MR 1749283 (2001f:60071)
  • 27. Sanz-Solé M., Sarrà M., ``Path properties of a class of Gaussian processes with applications to SPDE's'', in: Stochastic processes, physics and geometry: new interplays, I (Leipzig, 1999), CMS Conf. Proc., Vol. 28, 2000, Amer. Math. Soc., Providence, RI, pp. 303-316. MR 1803395 (2001m:60148)
  • 28. Schwartz L., ``Théorie des distributions'', 1966, Hermann.MR 0209834 (35:730)
  • 29. Sowers R., ``Multidimensional reaction-diffusion equations with white noise boundary perturbations'', Ann. of Prob., Vol. 22 (4), 1994, pp. 2071-2121.MR 1331216 (96k:60161)
  • 30. Walsh J.B., ``An introduction to stochastic partial differential equations'', Ecole d'été de probabilités de Saint-Flour XIV, Lecture Notes in Math., 1984, Springer Verlag.MR 0876085 (88a:60114)
  • 31. Wheeden R.L., Zygmund A., ``Measure and integral: an introduction to real analysis'', 1977, Marcel Dekker. MR 0492146 (58:11295)
  • 32. Wilcox C.H., ``The Cauchy problem for the wave equation with distribution data: an elementary approach'', The American Mathematical Society Monthly, Vol. 98, 1991, pp. 401-410. MR 1104303 (92h:35227)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 60H15, 60G15, 35R60

Retrieve articles in all journals with MSC (2000): 60H15, 60G15, 35R60

Additional Information

Robert C. Dalang
Affiliation: Institut de Mathématiques, Ecole Polytechnique Fédérale, Station 8, 1015 Lausanne, Switzerland

Olivier Lévêque
Affiliation: Institut de Systèmes de Communication, Ecole Polytechnique Fédérale, Station 14, 1015 Lausanne, Switzerland

Keywords: Stochastic partial differential equations, spatially homogeneous Gaussian noise, hyperbolic equations
Received by editor(s): January 26, 2004
Received by editor(s) in revised form: May 4, 2004
Published electronically: May 9, 2005
Additional Notes: The research of the first author was partially supported by the Swiss National Foundation for Scientific Research
This article is based on part of the second author’s Ph.D. thesis, written under the supervision of the first author.
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society