Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

New properties of convex functions in the Heisenberg group


Authors: Nicola Garofalo and Federico Tournier
Journal: Trans. Amer. Math. Soc. 358 (2006), 2011-2055
MSC (2000): Primary 35H20; Secondary 26B25, 20F18
DOI: https://doi.org/10.1090/S0002-9947-05-04016-X
Published electronically: December 20, 2005
MathSciNet review: 2197446
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove some new properties of the weakly $ H$-convex functions recently introduced by Danielli, Garofalo and Nhieu. As an interesting application of our results we prove a theorem of Busemann-Feller-Alexandrov type in the Heisenberg groups $ \mathbb{H}^n$, $ n=1,2$.


References [Enhancements On Off] (What's this?)

  • [A1] A. D. Alexandrov, Certain estimates for the Dirichlet problem, Soviet Math. Dokl., 1 (1960), 1151-1154. MR 0147776 (26:5290)
  • [A2] -, The impossibility of general estimates for solutions and of uniqueness conditions for linear equations with norms weaker than $ L^n$, Vestnik Leningrad. Univ., 21 (1966), (13), 5-10. MR 0197952 (33:6111)
  • [AM] L. Ambrosio & V. Magnani, Weak differentiability of BV functions on stratified groups, Math. Zeit., 245 (2003), no. 1, 123-153. MR 2023957 (2005a:43010)
  • [Ar1] G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat., 6 (1967), 551-561. MR 0217665 (36:754)
  • [Ar2] -, On the partial differential equation $ u\sb{x}{}\sp{2}u\sb{xx} +2u\sb{x}u\sb{y}u\sb{xy}+u\sb{y}{}\sp{2}u\sb{yy}=0$, Ark. Mat., 7 (1968), 395-425. MR 0237962 (38:6239)
  • [Ba1] I. Ja. Bakelman, Theory of quasilinear elliptic equations, Sibirsk. Mat. Z. (in Russian), 2 (1961), 179-186. MR 0126604 (23:A3900)
  • [Ba2] -, Geometric methods for solving elliptic equations, ``Nauka", Moscow, 1965. MR 0194727 (33:2933)
  • [Ba3] -, Convex Analysis and Nonlinear Geometric Elliptic Equations, Springer-Verlag, 1994. MR 1305147 (95k:35063)
  • [BR] Z. M. Balogh & M. Rickly, Regularity of convex functions on Heisenberg groups, Ann. Sc. Norm. Super. Pisa Cl. Sci., 5, 2 (2003), no. 4, 847-868. MR 2040646
  • [Be] A. Bellaïche & J.-J. Risler, ed., Sub-Riemannian Geometry, Birkhäuser, 1996. MR 1421821 (97f:53002)
  • [B] T. Bieske, On $ \infty$-harmonic functions on the Heisenberg group, Comm. PDE, no.3&4, 27 (2002), 727-761. MR 1900561 (2003g:35033)
  • [BC] T. Bieske & L. Capogna, The Aronsson-Euler equation for absolutely minimizing Lipschitz extensions with respect to Carnot-Carathéodory metrics, Trans. Amer. Math. Soc. 357 (2005), no. 2, 795-823. MR 2095631 (2005g:35036)
  • [Bo] J. M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les operateurs elliptique degeneres, Ann. Inst. Fourier, Grenoble, 1, 119 (1969), 277-304. MR 0262881 (41:7486)
  • [CC] L. A. Caffarelli & X. Cabré, Fully Nonlinear Elliptic Equations, Amer. Math. Soc., Colloquium Publ., vol. 43, 1991. MR 1351007 (96h:35046)
  • [CDG] L. Capogna, D. Danielli & N. Garofalo, The geometric Sobolev embedding for vector fields and the isoperimetric inequality, Comm. Anal. and Geom., 2 (1994), 201-215. MR 1312686 (96d:46032)
  • [CGr] L. Corwin & F. P. Greenleaf, Representations of nilpotent Lie groups and their applications, Part I: basic theory and examples, Cambridge Studies in Advanced Mathematics 18, Cambridge University Press, Cambridge (1990). MR 1070979 (92b:22007)
  • [CDKR] M. Cowling, A. H. Dooley, A. Korányi & F. Ricci, $ H$-type groups and Iwasawa decompositions, Adv. Math., 87 (1991), 1-41. MR 1102963 (92e:22017)
  • [CIL] M. Crandall, H. Ishii & P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), no.1, 1-67. MR 1118699 (92j:35050)
  • [Cy] J. Cygan, Subadditivity of homogeneous norms on certain nilpotent Lie groups, Proc. Amer. Math. Soc., 83 (1981), 69-70. MR 0619983 (82k:22009)
  • [Da] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer-Verlag, 1989. MR 0990890 (90e:49001)
  • [DGN1] D. Danielli, N. Garofalo & D. M. Nhieu, Notions of convexity in Carnot groups, Comm. Analysis and Geometry, 11, no.2, (2003), 263-341. MR 2014879 (2004m:22014)
  • [DGN2] -, On the best possible character of the $ L^Q$ norm in some a priori estimates for non-divergence form equations in Carnot groups, Proc. Amer. Math. Soc., 131, no.11, (2003), 3487-3498. MR 1991760 (2004i:35051)
  • [DGN3] -, Minimal surfaces in Carnot groups, preprint, 2003.
  • [DGNT] D. Danielli, N. Garofalo, D. M. Nhieu & F. Tournier, The theorem of Busemann-Feller-Alexandrov for convex functions in Carnot groups, Comm. Analysis and Geometry, 12 (2004), no. 4, 853-886. MR 2104079 (2005j:22005)
  • [E] L. C. Evans, Partial Differential Equations, Grad. Studies in Math., vol.19, Amer. Math. Soc., 1998. MR 1625845 (99e:35001)
  • [EG] L. C. Evans & R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, 1992. MR 1158660 (93f:28001)
  • [F1] G. B. Folland, A fundamental solution for a sub-elliptic operator, Bull. Amer. Math. Soc., 79 (1973), 373-376. MR 0315267 (47:3816)
  • [F2] -, Sub-elliptic estimates and function spaces on nilpotent Lie groups, Ark. Math., 13 (1975), 161-207. MR 0494315 (58:13215)
  • [FS1] G. B. Folland & E. M. Stein, Estimates for the $ \Bar {\partial}_{b}$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27 (1974), 429-522. MR 0367477 (51:3719)
  • [FS2] -, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982. MR 0657581 (84h:43027)
  • [G] N. Garofalo, Analysis and Geometry of Carnot-Carathéodory Spaces, With Applications to Pde's, Birkhäuser, book in preparation.
  • [GN] N. Garofalo & D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math., 49 (1996), 1081-1144. MR 1404326 (97i:58032)
  • [GT] D. Gilbarg & N. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Grundleheren der Mathematischen Wissenschaften, 224, Springer, 1998. MR 0737190 (86c:35035)
  • [Gu] C. E. Gutierrez, The Monge-Ampère Equation, Birkhäuser, 2001. MR 1829162 (2002e:35075)
  • [GM] C. E. Gutierrez & A. Montanari, Maximum and comparison principles for convex functions on the Heisenberg group, preprint, first posted on May 31, 2003, to the webpage www.dm.unibo.it/$ \sim$montanar
  • [H] H. Hörmander, Hypoelliptic second-order differential equations, Acta Math., 119 (1967), 147-171. MR 0222474 (36:5526)
  • [Hou] A. S. Householder, The theory of matrices in numerical analysis, Blaisdell Publishing Co. Ginn and Co., New York-Toronto-London, 1964. MR 0175290 (30:5475)
  • [J] R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), no. 1, 51-74. MR 1218686 (94g:35063)
  • [Ka] A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc., 258 (1980), 147-153. MR 0554324 (81c:58059)
  • [K] N. V. Krylov, Sequences of convex functions, and estimates of the maximum of the solution of a parabolic equation, Sibirski Math. Zh., no.2, 17 (1976), 226-236. MR 0420016 (54:8033)
  • [LMS] G. Lu, J. Manfredi & B. Stroffolini, Convex functions on the Heisenberg group, Calc. Variat. & Part. Diff. Eq., 19 (2004), no. 1, 1-22. MR 2027845 (2004m:35088)
  • [M] V. Magnani, Lipschitz continuity, Alexandrov theorem, and characterizations for $ H$-convex functions, preprint, September 2003.
  • [Mon] R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, Mathematical Surveys and Monographs, 91. American Mathematical Society, Providence, RI, 2002. MR 1867362 (2002m:53045)
  • [P] P. Pansu, Métriques de Carnot-Carathéodory et quasi-isométries des espaces symétriques de rang un, Ann. of Math., (2)129 (1989), no. 1, 1-60. MR 0979599 (90e:53058)
  • [Pu1] C. Pucci, Operatori ellittici estremanti, Ann. Mat. Pura Appl., (4) 72 (1966), 141-170. MR 0208150 (34:7960)
  • [Pu2] -, Limitazioni per soluzioni di equazioni ellittiche, Ann. Mat. Pura Appl., (4) 74 (1966), 15-30. MR 0214905 (35:5752)
  • [S] E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, 1993. MR 1232192 (95c:42002)
  • [Sto1] S. Stojanovic, Computational Financial Mathematics using Mathematica: optimal trading in stocks and options, Birkhäuser, 2002. MR 1930223 (2003i:91056)
  • [Sto2] -, Optimal momentum edging via hypoelliptic reduced Monge-Ampère PDE's, preprint, 2003.
  • [TW] N. S. Trudinger & X. J. Wang, Hessian measures, Top. Methods in Nonlin. Anal., 10 (1997), 225-239. MR 1634570 (2000a:35061)
  • [V] V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1974. MR 0376938 (51:13113)
  • [Wa1] C. Wang, The Aronsson equation for absolute minimizers of $ L^\infty$ functionals associated with vector fields satisfying Hörmander's condition, preprint, May 2003.
  • [Wa2] -, The comparison principle for viscosity solutions of fully nonlinear sub-elliptic equations in Carnot groups, preprint, July 2003.
  • [Wa3] -, Viscosity convex functions on Carnot groups, Proc. Amer. Math. Soc., 133 (2005), no. 4, 1247-1253. MR 2117228 (2006a:58026)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35H20, 26B25, 20F18

Retrieve articles in all journals with MSC (2000): 35H20, 26B25, 20F18


Additional Information

Nicola Garofalo
Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
Email: garofalo@math.purdue.edu

Federico Tournier
Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
Email: tournier@math.purdue.edu, fedeleti@aim.com

DOI: https://doi.org/10.1090/S0002-9947-05-04016-X
Keywords: Sub-elliptic fully nonlinear equations, monotonicity of Monge-Amp\`ere measures, sub-elliptic cones, Busemann-Feller-Alexandrov theorem
Received by editor(s): February 13, 2004
Published electronically: December 20, 2005
Additional Notes: The first author was supported in part by NSF Grants No. DMS-0070492 and No. DMS-0300477
This work was presented by the first author in a Colloquium lecture at the University of Missouri, Columbia, in April 2003, and at the AMS Meeting at San Francisco State University in May 2003
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society