Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Torus actions on weakly pseudoconvex spaces


Author: Stefano Trapani
Journal: Trans. Amer. Math. Soc. 358 (2006), 1971-1981
MSC (2000): Primary 32M05, 32U10
DOI: https://doi.org/10.1090/S0002-9947-05-04053-5
Published electronically: December 20, 2005
MathSciNet review: 2197438
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the univalent local actions of the complexification of a compact connected Lie group $ K$ on a weakly pseudoconvex space where $ K$ is acting holomorphically have a universal orbit convex weakly pseudoconvex complexification. We also show that if $ K$ is a torus, then every holomorphic action of $ K$ on a weakly pseudoconvex space extends to a univalent local action of $ K^{\mathbf{C}}.$


References [Enhancements On Off] (What's this?)

  • 1. E. Casadio Tarabusi, A. Iannuzzi, S. Trapani, Globalizations, fiber bundles and envelopes of holomorphy Math Z. 233 (2000) pag. 535-551. MR 1750936 (2001f:32035)
  • 2. M. Coltoiu, N. Mihalache, Strongly plurisubharmonic exhaustion functions on 1-convex spaces Math. Ann. 270 (1985), pag. 63-68. MR 0769607 (86a:32037)
  • 3. J. P. Demailly, Estimations $ L^2$ pour l'operate'ur $ \overline{\partial}$ d'un fibre' vectoriel holomorphe semi-positif au dessus d'une variete' Kaelerienne complete Ann. Sci. Ecole Norm. Sup. 15 (1982) pag. 457-511. MR 0690650 (85d:32057)
  • 4. J. P. Demailly, Singular Hermitian metrics on positive line bundles in ``Complex algebraic varieties" Bayreuth 1990 (K. Hulek et al., eds.), Lecture Notes in Math. vol. 1507 Springer Berlin (1992) 361-409. MR 1178721 (93g:32044)
  • 5. J. E. Fornaess, R. Narashimhan, The Levi problem on complex spaces with singularities Math. Ann. 248 (1980) pag. 47-72. MR 0569410 (81f:32020)
  • 6. H. Grauert, Bemerkenswerte pseudokonvexe Mannigfaltigkeiten Math Z. 81 (1963) pgs. 377-391. MR 0168798 (29:6054)
  • 7. P. Heinzner, Geometric invariant theory of Stein Spaces Math. Ann. 289 (1991) pag. 631-662. MR 1103041 (92j:32116)
  • 8. P. Heinzner, Equivariant holomorphic extension of real analytic manifolds Bull. Soc. Math. France 121 (1993) pag. 445-463. MR 1242639 (94i:32050)
  • 9. P. Heinzner, The minimum principle from an Hamiltonian point of view Doc. Math. 3 (1998) pag. 1-14 (electronic) MR 1620612 (99c:32044)
  • 10. P. Heinzner, A. Huckleberry, F. Loose, Kahlerian extension of the symplectic reductions J. Reine Angew. Math. 455 (1994) pag. 123-140. MR 1293876 (95k:58061)
  • 11. P. Heinzner, A. Iannuzzi, Integration of local actions on holomorphic fiber spaces Nagoja Math. J. 146 (1997) pag. 31-53. MR 1460953 (98k:32047)
  • 12. G. Hochschild, The structure of Lie groups Holden-Day, San Francisco, London, Amsterdam (1965) MR 0207883 (34:7696)
  • 13. A. Iannuzzi, Induced local actions on taut and Stein manifolds preprint.
  • 14. W. Kaup, Infinitesimale Tranformationengruppen komplexes Math. Ann. 160 (1965) pag. 72-93. MR 0181761 (31:5988)
  • 15. S. Kobayashi, Hyperbolic complex spaces Springer-Verlag (1998). MR 1635983 (99m:32026)
  • 16. D. Mumford, J. Fogarty, F. Kirwan, Geometric Invariant theory Springer-Verlag (Third enlarged edition 1994). MR 1304906 (95m:14012)
  • 17. R. S. Palais, A global formulation of the Lie theory of transformation groups Mem. of the Amer. Math. Soc. (1955). MR 0121424 (22:12162)
  • 18. Y. T. Siu Holomorphic fiber bundles whose fiber are bounded Stein domains with zero first Betti number Math. Ann. 219 (1976) pgs. 171-192. MR 0390303 (52:11129)
  • 19. Y. T. Siu Pseudoconvexity and the problem of Levi Bull. Am. Math. Soc. 84 (1978) pgs. 481-512. MR 0477104 (57:16648)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 32M05, 32U10

Retrieve articles in all journals with MSC (2000): 32M05, 32U10


Additional Information

Stefano Trapani
Affiliation: Dipartimento di Matematica, Universita’ di Roma 2 Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy
Email: trapani@mat.uniroma2.it

DOI: https://doi.org/10.1090/S0002-9947-05-04053-5
Received by editor(s): August 7, 2003
Received by editor(s) in revised form: January 27, 2004
Published electronically: December 20, 2005
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society